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We describe a magnetic relation in analogy to the well-known dielectric Lyddane-Sachs-Teller relation
[R. H. Lyddane et al., Phys. Rev. 59, 673 (1941)]. This magnetic relation follows directly from the model
equations for nuclear induction due to fast oscillating electromagnetic fields [F. Bloch, Phys. Rev. 70, 460
(1946)] and relates the static permeability with the product over all ratios of antiresonance and resonance
frequencies associated with all magnetic excitations within a given specimen. The magnetic relation differs
significantly from its dielectric analog where the static properties are related to ratios of the squares of
resonance frequencies. We demonstrate the validity of the magnetic Lyddane-Sachs-Teller relation using
optical magnetization data from terahertz electron magnetic resonance spectroscopic ellipsometry measure-
ments in the presence of an external magnetic field on an iron-doped semiconductor crystal of gallium nitride.
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Introduction—We describe here a fundamental law in
magnetism that relates static properties with optical phe-
nomena in magnetism. This law—which we will term here
the magnetic Lyddane-Sachs-Teller relation—has a well-
known analog—the dielectric Lyddane-Sachs-Teller (LST)
relation [1]. The latter was described by Teller et al. within
a seminal paper in 1941. This fundamental law has since
entered textbooks in solid-state physics [2]. We derive the
magnetic relation here from another, equally important
contribution in physics, the nuclear induction paper by
Bloch on the interaction of nuclear magnetic moments with
fast oscillating electromagnetic fields [3]. This 1946 paper
led to the discovery of magnetic resonance, which today is
perhaps one of the most widespread techniques used in
science. The magnetic relation derived here is similar, yet
differs significantly from its dielectric analog as will be
discussed further below. We demonstrate here the validity
of the magnetic Lyddane-Sachs-Teller relation using optical
magnetization data available from terahertz spectroscopic
ellipsometry measurements on an iron-doped semiconduc-
tor crystal of gallium nitride. We developed instruments
recently to measure magnetic resonance as predicted by
Bloch continuously as a function of frequency and with
complete polarization information [4]. Analysis of poles

and zeros of the real and imaginary parts of the permeabil-
ity function provides access to magnetic resonance and
antiresonance frequencies analogous to the transverse and
longitudinal optical frequencies in the dielectric function
across dielectric lattice mode excitations. Thus, we can also
demonstrate here experimental evidence for the correctness
of the magnetic Lyddane-Sachs-Teller relation.
The LST relation establishes a fundamental equality

between two critical ratios in materials exhibiting optical
lattice vibrations [1]. Specifically, the relation equates the
square of the ratio of frequencies between longitudinal
optic (LO; ωLO) and transverse optic (TO; ωTO) lattice
vibrations at long wavelengths, for ionic crystals with one
optical phonon branch, with the ratio of the static (εdc) and
high-frequency dielectric permeability (ε∞),

εdc
ε∞

¼ ω2
LO

ω2
TO

: ð1Þ

Transverse resonance occurs at very large displacement and
longitudinal resonance occurs when the field-induced
polarization compensates its vacuum contribution (antire-
sonance). For materials with multiple (N) optical phonon
branches, extensions to the LST relation have been made by
Barker [5] and Berreman and Unterwald [6],

ϵdc
ϵ∞

¼
YN
l¼1

ω2
LO;l

ω2
TO;l

: ð2Þ

Further generalizations have been proposed by Cochran
and Cowley [7], who have extended the theory to include
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the phonon displacement vector. This version is applicable
when the principal polarization axes align with orthogonal
directions. A coordinate invariant LST relation was intro-
duced, which holds for all crystal symmetries, including
monoclinic and triclinic [8]. The coordinate invariant LST
relation was derived from the microscopic Born-Huang
description of polar lattice vibrations and relates the
determinant of the permittivity tensor at zero and infinite
frequencies to the LO and TO resonance modes defined
thereby [8],

det½ϵ−1ðωTOÞ� ¼ 0; det½ϵðωLOÞ� ¼ 0; ð3Þ

det½ϵðω ¼ 0Þ�
detðϵ∞Þ

¼
YN
l¼1

ω2
LO;l

ω2
TO;l

: ð4Þ

This generalization has proved pivotal in analyzing phonon
modes in monoclinic crystal structures, advancing our
understanding of material properties [9–13].
In this Letter, we extend the concept of the LST relation

toward magnetic dipole transitions. We use equations
introduced by Bloch for the frequency response of mag-
netic moments in slowly varying external fields [3]. Hence,
in the linear optics regime, we must find an expression for
the permeability tensor μ which relates the magnetization
M to the external magnetic field H via M ¼ μðωÞH.
Spectroscopic information about the response function

tensor is needed to make use of the LST relation. Such
spectroscopic information about magnetic resonances can
be gained using terahertz Mueller matrix ellipsometry,
as demonstrated recently for the N impurity in SiC [4].
Different model approaches can be employed to obtain
frequencies, amplitudes, transverse relaxation times, and
spin volume density parameters [4,14,15]. For example,
dielectric and magnetic modes, and their hybridization in
the far-infrared response of magnetodielectric Dy3Fe5O12

garnet were reported by Rogers et al. [16]. The authors
assumed isotropic response for both dielectric and magnetic
resonances. Here, we present a method in which the
permeability tensor derived from the Bloch equations
permits one to determine the dc magnetization from the
analysis of TO and LO modes associated with magnetic
resonance(s). We apply this theoretical framework to
experimental data obtained using our in-house built tera-
hertz electron magnetic resonance (EPR) ellipsometer and
validate our results with results from dc magnetization
measurements using a superconducting quantum inter-
ference device (SQUID) magnetometer, demonstrating
very good agreement. We make use of the well-known
magnetic properties of Fe-doped gallium nitride (GaN) as
an example.
Theory—The Bloch equations describe the time evolu-

tion of a magnetic moment vector M and can be written
as [3,15,17,18]

∂M
∂t

¼ γeðM ×HÞ −Mðêx þ êyÞ
T2

−
ðM −M0Þêz

T1

; ð5Þ

where × denotes the cross product. Here, γe represents the
electron gyromagnetic ratio and is taken to be positive
valued. The unit vectors in the laboratory coordinate system
ðêx; êy; êzÞ correspond to the x, y, and z axes, respectively,
with the z axis aligned parallel to the direction of the
magnetic field. Additionally, T1 and T2 are the phenom-
enological longitudinal and transverse relaxation times,
respectively. These relaxation times describe how the
system returns to equilibrium when conditions, e.g., the
magnetic field direction, change and contribute a wealth
of information regarding the electronic structure and
molecular dynamics [19]. The longitudinal relaxation time
generally depends on spin-lattice interactions, and the
transverse relaxation time depends on spin-spin inter-
actions [20].
The total magnetic field is given by

H ¼ H0êz þHxðtÞêx þHyðtÞêy; ð6Þ

where H0 represents the static component of the magnetic
field aligned with the z axis, and HxðtÞ and HyðtÞ denote
the time-varying components of the magnetic field in the x
and y directions, respectively. These latter components are
attributed to the rotating magnetic field generated by
polarized light traversing the system. Upon substituting (6)
into the Bloch equations, we derive the following system of
equations:

∂Mx

∂t
¼ ω0My −

Mx

T2

þ γeMzHyðtÞ;
∂My

∂t
¼ −ω0Mx −

My

T2

− γeMzHxðtÞ;
∂Mz

∂t
¼ −

Mz −M0

T1

þ γe½MyHxðtÞ −MxHyðtÞ�; ð7Þ

where we have introduced ω0 ¼ γeH0, which corresponds
to the angular frequency of the magnetization’s precession
around the z axis. When the magnetic field components
HxðtÞ and HyðtÞ are significantly smaller than H0, a
condition described as the low-power limit, the magneti-
zation along the z axis Mz can be approximated as
remaining at its equilibrium value M0, and ∂Mz=∂t ¼ 0.
This simplification implies a negligible influence of satu-
ration effects on the system [21]. We can, in the low-power
limit, further simplify by the substitution γeMz ¼ γeM0 ¼
γeH0χ0 ¼ ω0χ0, where χ0 ≡M0=H0 is the dc magnetic
susceptibility. By assuming that 1=T2 ≪ ω0 and applying a
Fourier transform, we arrive at

Mxðω2
0 − iω=T2 − ω2Þ ¼ ω2

0χ0Hx − iχ0ω0ωHy;

Myðω2
0 − iω=T2 − ω2Þ ¼ ω2

0χ0Hy þ iχ0ω0ωHx; ð8Þ

PHYSICAL REVIEW LETTERS 134, 086703 (2025)

086703-2



where ω is the angular frequency, and in tensor form

�
Mx

My

�
¼ χM

�
Hx

Hy

�

¼ χ0

0
B@

ω2
0

ω2
0
−iω=T2−ω2 −i ωω0

ω2
0
−iω=T2−ω2

i ωω0

ω2
0
−iω=T2−ω2

ω2
0

ω2
0
−iω=T2−ω2

1
CA�Hx

Hy

�
; ð9Þ

where tensor χM has a structure similar to the Polder tensor
for the magnetic susceptibility of ferrites [22]. To arrive at
the LST relation and its generalizations, it is convenient to
neglect the linewidth broadening (1=T2 ¼ 0), as it does not
affect the final result. For the case of systems with spin
S > 1=2, it is assumed that each of the 2S transitions
adheres to the same line shape, and the Bloch permeability
is written as

μ ¼ I þ
X2S
j¼1

0
BBBB@

χ0;jω
2
0;j

ω2
0;j−ω

2 i χ0;jωω0;j

ω2
0;j−ω

2 0

−i χ0;jωω0;j

ω2
0;j−ω

2

χ0;jω
2
0;j

ω2
0;j−ω

2 0

0 0 χ0;j

1
CCCCA; ð10Þ

where each of the 2S spin transitions contributes inde-
pendently to the static susceptibility χ0 ¼

P
2S
j¼1 χ0;j, sim-

ilar to the extension of the LST relation to multiple optical
phonon branches [5,6]. This analogy invites a comparison
between spin and phonon transitions, given the well-
characterized nature of phonon modes in low-symmetry
materials [8,11]. To begin with, setting ω ¼ 0 in Eq. (10),
we recover the dc response μðω ¼ 0Þ ¼ μdcI, where
μdc ¼ ð1þ χ0Þ denotes the dc magnetic permeability. It
is noteworthy that this model does not capture diamagnetic
contributions. Magnetic dipole transitions outside the
available spectral range such as radio-frequency-induced
nuclear magnetic resonance also do not contribute to the
summation of χ0. Furthermore, this derivation assumes the
absence of magnetic resonances at frequencies beyond all
ω0;j, effectively setting μ∞ ¼ 1. We utilize the coordinate
invariant LST relation and search for the eigenresonances

det ½μ−1ðωTOÞ� ¼ 0; det½μðωLOÞ� ¼ 0: ð11Þ

It can be easily verified that the determinant of μ diverges
when the frequency ω equals one of the resonant frequen-
cies ω0;j. Thus, the TO modes correspond to the resonance
frequencies, ωTO;j ¼ ω0;j. However, identifying the LO
modes requires a more detailed analysis. The determinant is
given by [23]

detðμÞ ¼ μdc

"
1þ 2

X2S
j¼1

χ0;jω
2
TO;j

ω2
TO;j − ω2

þ
 X2S

j¼1

χ0;jω
2
TO;j

ω2
TO;j − ω2

!
2

− ω2

 X2S
j¼1

χ0;jωTO;j

ω2
TO;j − ω2

!
2
#

¼ μdc

�
1Q

2S
j¼1 ωTO;j þ ω

P2Sð−ωÞ
�

×

�
1Q

2S
j¼1 ωTO;j − ω

P2SðωÞ
�
: ð12Þ

Here, P2SðωÞ is a polynomial of degree 2S, which,
according to the fundamental theorem of algebra can be
written as the product of its linear factors, where the roots
correspond to the LO modes

detðμÞ ¼ μdc

(Y2S
j¼1

ωLO;j þ ω

ωTO;j þ ω

)"Y2S
j¼1

ωLO;j − ω

ωTO;j − ω

#
: ð13Þ

Setting ω ¼ 0 we obtain

det½μðω ¼ 0Þ� ¼ μdc
Y2S
j¼1

ω2
LO;j

ω2
TO;j

¼ μ3dc; ð14Þ

and after dividing by μdc and taking the root,

μdc ¼
Y2S
j¼1

ωLO

ωTO
: ð15Þ

Note that this is valid also for the complementary case,
μxxðωÞ ¼ μzzðωÞ, μyy ¼ 1, as the determinant will have
the same form. Equation (15) is the main finding of this
Letter—the magnetic analog of the LST relation.
Equation (14) is independent of the choice of coordinates
and thus establishes the coordinate invariant magnetic LST
relation. Note the significant difference between the mag-
netic LST [Eq. (15)] and LST [Eq. (2)] relations, where
the dielectric resonance frequencies appear squared in the
latter, while the magnetic resonance frequencies appear in
first order in the former. We further propose to rewrite
Eq. (13) and introduce a generalized magnetic permeability
function akin to the Berreman-Unterwald form [6]

det½μðωÞ� ¼ μdc
Y2S
j¼1

ω2
LO;j − ω2

ω2
TO;j − ω2

: ð16Þ

Here, relaxation times T2;j and T⋆
2;j can be introduced

det½μðωÞ� ¼ μdc
Y2S
j¼1

ω2
LO;j − ω2 − iω=T⋆

2;j

ω2
TO;j − ω2 − iω=T2;j

; ð17Þ
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and we propose Eq. (17) to be used for analysis of measured
magnetic permeability tensor spectra. Parameters T2;j; T⋆

2;j

refer to the transverse relaxation times for resonances ωTO;j,
ωLO;j, respectively. Such spectra maybe gained from inves-
tigation of polarized magnetic reststrahlen bands in ferro-
magnets, for example [27–29]. We demonstrate the validity
of the magnetic LST relation by performing spectroscopic
terahertz EPR ellipsometry measurements [4,14] and sub-
sequent analysis using the permeability tensor in Eq. (10)
including the relaxation time parameters.
We obtain the dc magnetization by summation over all

transition amplitudes and compare the results with SQUID
magnetization measurements. The TOmodes are then known
and the LOmodes are then found numerically by determining
the roots of Eq. (10). The product of their ratios is then tested
against the results obtained from SQUID analysis as well, i.e.,
the validity of Eq. (15) is then confirmed.
Method—We conducted terahertz EPR ellipsometry and

SQUID measurements on an iron-doped GaN sample. The
sample is a bulk single crystal with c-plane (0001) surface
orientation produced via halide vapor phase epitaxy,
measuring approximately 8 × 5 mm with a thickness of
0.989 mm [23,30].
For the terahertz EPR ellipsometry measurements, we

used a superconducting split-coil magnet system [31]
capable of generating magnetic fields from −8 to 8 T with
a field homogeneity of about 3000 ppm across the sample
volume. The Mueller matrix elements were measured using
a custom-built terahertz ellipsometer across a spectral range
of 120–129 GHz in 50 MHz increments, employing a
tunable single-frequency continuous-wave source with a
frequency bandwidth of approximately 50 kHz. A solid-
state synthesizer frequency source, multiplied by a signal
generator extension (Virginia Diodes, Inc.), provided pre-
cise digital control over frequency and duty cycle.
Intensity readings were collected at a Golay cell detector

under various polarizer and analyzer configurations to
obtain the top-left 3 × 3 section of the Mueller matrix.
Measurements were executed in a reflection setup with the
sample positioned at a 45° angle of incidence between
the split coils, aligning the magnetic field parallel to the
incident beam. The magnetic field was oriented at 45°
relative to the crystallographic c axis of the Fe-doped GaN
sample. By rotating the sample around its surface normal,
we aligned the two crystallographically equivalent gallium
sites in the wurtzite lattice structure relative to the magnetic
field. The alignment was done such that the zero-field
splitting of the two different Ga site occupying Fe atoms
resulted in equivalent spin levels, thereby reducing the
effect of multiplicity from the quintuplet spin transitions.
Thus, the two quintuplets coincide within the terahertz EPR
ellipsometry spectra [15]. We selected this sample orienta-
tion for convenience, which has no effect on the results
obtained in our Letter for the magnetic LST relation. We
thereby reduce computation time for the data analysis

procedures. One could have instead summed over all
transitions when the sample has a different orientation
resulting in ten individual resonances.
Measurements were conducted at a magnetic field

strength of 4.42 T, repeated at −4.42 T, and also without
a magnetic field to subtract background data, allowing for
the extraction of small-signal difference data. The sample’s
temperature was maintained at 15 K throughout the
measurement process. To model the response, we applied
Eq. (10) (with relaxation times included) and the Berreman
4 × 4 matrix formalism, and we compared the model
calculated data with the experimental data by minimizing
the difference using a least-squares method [23].
The dc magnetic susceptibility of the Fe-doped GaN

single crystal was recorded as a function of temperature
under a magnetic field of 4.42 T using a SQUID magne-
tometer from Quantum Design, Inc. The sample was
attached to a piece of paper using insulating varnish
(GE Varnish, Oxford Instruments) and mounted with its
plane parallel to the direction of the magnetic field. To
eliminate the diamagnetic contribution, we made an addi-
tional magnetization versus magnetic field measurement.
The diamagnetic susceptibility was then estimated from
the slope of the high-field data and used to obtain the
corrected value of the magnetization using the equation:
Mcorr ¼ Mexp − χdiaH, whereMcorr is the corrected value of
the magnetization, Mexp is the experimentally measured
value, χdia is the slope of the high-field region in the
magnetization versus magnetic field curve, and H is the
magnetic field.
Results and discussion—The experimental results along-

side the corresponding best-fit model are presented in
Fig. 1. A very good agreement between the best-match
model calculated and experimental data is evident. This
substantiates our theoretical approach in linking optical
modes with static magnetic properties, as can be done

FIG. 1. Experimental (black dots) and best-match model
calculated (red line) data from a frequency-swept terahertz
EPR Mueller matrix measurement, performed at 15 K and
magnetic field �4.42 T. The sample is an iron-doped GaN
substrate.
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for phononic resonances that follow a Lorentzian line
shape. All Mueller matrix elements are included in the
Supplemental Material [23], which reveal the same good
agreement for all elements. The inclusion of frequency-
dependent contributions to the dielectric tensor does not
improve the agreement. Hence, we can conclude that
potentially existing hybridization effects between dielectric
and magnetic processes are small and it can be justified
to consider the resonances observed here as magnetic in
nature. In Fig. 2, the imaginary parts of the calculated
function detðμÞ and its inverse are plotted to illustrate the
small differences between the associated TO and LO
modes. For all transitions, differences are observed on
the order of tens of kilohertz, and numerical values are
tabulated in Table I. Measurements at kilohertz frequency
intervals are needed to resolve the differences between the
modes in future experiments. For the purpose of this Letter,
the transitions originating at the two nonequivalent Ga sites
are accounted for conveniently by rotating the sample such
that the transitions are effectively pairwise equivalent,
resulting in a total of five observable resonances. Hence,
the sum is running over five transitions with twice the
amplitude parameters. By inserting the calculated optical
modes into Eq. (15), we obtain the relative static per-
meability of 1þ ð5.4� 0.2Þ × 10−6 within a 95% confi-
dence interval. We note that the largest source of
uncertainty is the accuracy by which the sample thickness
parameter is known [23].

A volume magnetization of MVol ¼ 18.9 A=m was
obtained at 15 K from the SQUID magnetometry meas-
urement. The static permeability is then given by the
relation

μdc ¼ 1þMVol

H

¼ 1þ 18.9 A=m
3.52 × 106 A=m

¼ 1þ 5.37 × 10−6: ð18Þ

Given that the SQUID measurement was conducted with
the static magnetic field aligned parallel to the sample
surface, i.e., with H parallel to the GaN c axis, comparison
with the terahertz EPR result requires extrapolating the
relative static magnetic susceptibility for a scenario where
the magnetic field is oriented at 45° relative to the GaN c
axis [23]. After correction of the SQUID result for the
magnetic field geometry, a value of 1þ 5.32 × 10−6 is
obtained, in very good agreement with the ellipsometry
result. Hence, we conclude an excellent match between the
theory presented here and the results of the conducted
experiments. We conclude the validity of the magnetic LST
relation, therefore, for magnetic transitions such as those
occurring at impurities in semiconductor materials.
In conclusion, this Letter presents the frequency depend-

ence and tensor structure of the magnetic susceptibility for
the interaction of electromagnetic waves with paramagnetic
resonances, which permits correctly representing measured
Mueller matrix data. Moving forward, we propose that this
expression should be used to model data from polarization-
resolved reflection and transmission-type optical experi-
ments involving paramagnetic materials. A new relationship
is derived and demonstrated by experiment from our
tensor model which establishes the magnetic analog of the
Lyddane-Sachs-Teller relationship for dipolar excitations.

FIG. 2. Best-match-model calculated imaginary part of the
determinant of the frequency-dependent permeability tensor μ
(red solid line) and the negative of the imaginary part of the
determinant of the frequency-dependent inverse permeability
tensor μ−1 (cyan dashed line). Resonance (ωTO;j) and antireso-
nance (ωLO;j) peak in Imμ and −Imμ−1, respectively. The inset
enlarges the difference between transitions j ¼ 4. Note, the
splitting between ωLO;j and ωTO;j is much smaller (few tens to
few hundreds of kilohertz, see Table I) than the frequency
intervals at which the data were acquired (50 MHz).

TABLE I. Calculated parameters from a best-match model
using nonlinear least-squares optimization on terahertz EPR
ellipsometry data at 15 K and a magnetic field of �4.42 T.
Uncertainties for the last significant digit are provided in
parentheses. Uncertainties for parameters χ0;j and T2;j were
estimated using the square root of the covariance matrix derived
from the optimization. The uncertainties for frequencies are
assumed to match uncertainty in the magnetic field strength,
known to five significant digits.

j 1 2 3 4 5

ωTO;j

(GHz) 121.87(1) 122.65(1) 124.07(1) 125.72(1) 127.22(1)
ωLO;j-ωTO;j

(kHz) 23.037(1) 65.624(1) 111.12(1) 177.03(1) 301.34(1)
χ0;j
(10−8) 19(3) 54(3) 90(4) 141(5) 237(7)
T2;j

(ns) 2.6(7) 3.2(3) 4.9(3) 3.3(2) 3.3(2)
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