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Biological and living organisms sense and process information from their surroundings, typically
having access only to a subset of external observables for a limited amount of time. In this Letter, we
uncover how biological systems can exploit these accessible degrees of freedom to transduce
information from the inaccessible ones with a limited energy budget. We find that optimal transduction
strategies may boost information harvesting over the ideal case in which all degrees of freedom are
known, even when only finite-time trajectories are observed, at the price of higher dissipation. We
apply our results to red blood cells, inferring the implemented transduction strategy from membrane
flickering data and shedding light on the connection between mechanical stress and transduction
efficiency. Our framework offers novel insights into the adaptive strategies of biological systems under
nonequilibrium conditions.
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Understanding how biological systems sense and proc-
ess information from their surroundings is a long-standing
question [1–4]. A fundamental problem is that these
systems cannot typically access all the degrees of freedom
(DOFs) characterizing the external world. Rather, they
must rely on a subset of stochastic observables transmitting
such external information to their internal processes. This
transduction mechanism is made even more challenging by
the intrinsic spatiotemporal limitations of the accessible
trajectories, e.g., chemical concentrations [5–7] or posi-
tions in space [8–11]. How transduction allows for efficient
information harvesting is far from being understood.
Several works on signaling pathways highlighted that
any information-processing operation inevitably requires
energy [12–15], with theoretical limits on sensing of noisy
variables [4–6,16]. However, very little is known about
how much information on inaccessible observables is
contained in the accessible ones. This is especially relevant
since all biological systems operate with a limited energy
budget. As a consequence, they have to tune their trans-
duction strategies accordingly to achieve the maximal
amount of information on the hidden DOFs. Moreover,
the presence of multiple timescales [17–21], the

nonreciprocity of the interactions [22,23], and the intrinsic
activity of biological systems [24] make the identification
of optimal strategies a formidably complex task.
In this Letter, we tackle these problems and show that

optimal transduction strategies may boost information
harvesting over the ideal case in which all DOFs are
known. We start by studying a hierarchical model, where
a particle is coupled nonreciprocally to an intermediate
observable that relays the information of a hidden DOF.
The transduction strategy is implemented by tuning the
coupling strength. We analytically identify the regimes
in which the dissipation due to the unobservable DOF
either prevents transduction or makes it inefficient
over the ideal case, and show that efficient transduction
inevitably causes an increase in both information variance
and dissipation rate. However, biological systems usually
extract information from stochastic trajectories on the fly.
Hence, we study how the observation time of such
trajectories affects the optimal transduction coupling.
Finally, we extend our framework to analyze experimen-
tal data on red blood cells (RBCs). We quantify how
much information on cytoskeleton activity is transduced
into membrane flickering, unraveling the connection
between transduction strategies and dissipation and high-
lighting intriguing differences in performance depending
on mechanical conditions.
To fix the ideas, consider a membrane flickering due to

the activity of an internal bath η (e.g., the cytoskeleton for
RBCs [25]). The membrane undulations x are measured
by an external biological or artificial probe y through a
coupling parameter a. This coupling may be nonrecip-
rocal, since the probe may not influence membrane
motion. Thus, we have the following hierarchical active
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model [Fig. 1(a)]:

τyẏ ¼ −yþ axþ ffiffiffiffiffiffiffiffiffiffiffiffi

2τyDy

p

ξyðtÞ;
τxẋ ¼ −xþ σηþ

ffiffiffiffiffiffiffiffiffiffiffiffi

2τxDx

p

ξxðtÞ;
τηη̇ ¼ −ηþ ffiffiffiffiffiffiffiffiffiffiffiffi

2τηDη

p

ξηðtÞ; ð1Þ

where σ is the bath-membrane coupling, ξi white noises,
Di diffusion coefficients, and τi the typical timescales,
with i ¼ x; y; η. Since the probe has to harvest informa-
tion on η without being able to interact with it directly,
we focus on the role of the indirect coupling a, which the
probe must tune to optimize the transduction of infor-
mation from the bath. We fix Dx ¼ Dy ¼ Dη ¼ 1 and
τx ¼ τy ¼ τ ¼ 1. A leading role is played by both σ,
which controls the membrane-bath dissipation, and
τη ≡ τθη, dictating whether the activity is averaged out
or not [17].
The task of the probe is to extract information on the

bath. Consider first the ideal case in which all DOFs are
accessible, so that the probe can directly maximize the
mutual information between η and itself Iyη and minimize
the dissipation induced by its coupling to the membrane,
Ṡa ¼ Ṡtot − Ṡtotja¼0. This amounts to finding the coupling
a� that maximizes the Pareto functional LðaÞ [26,27]:

a� ¼ argmax
a

ðλIyη − ð1 − λÞTṠaÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LðaÞ

; ð2Þ

where T is taken as unit time and 0 < λ < 1. Since
information and dissipation are usually in trade-off [14],
an optimal front characterizing transduction in different
regimes naturally emerges [Fig. 1(b)]. We remark that the
functional approach proposed here should be seen as an
a posteriori description of the system, rather than an
a priori design principle [2,4,28,29].
The parameter λ represents the strategy that the

probe implements. For small λ, the probe is acting to

preferentially minimize dissipation, while a high λ denotes
an information-driven strategy. Thus, λ indirectly sets the
system’s energy budget (see Supplemental Material [30]).
At stationarity, we evaluate analytically the mutual infor-
mation between y and η:

Iyη ¼
1

2
log

ðΣÞyyðΣÞηη
detðΣyηÞ

; ð3Þ

where ðΣÞij are the entries of the covariance matrix of
the system Σ, and Σij is the corresponding submatrix on
variables i and j. Similarly, the dissipation is

Ṡtot ¼ TrðD−1AΣATÞ − TrðAÞ; ð4Þ

with A and D the interaction and diffusion matrices
associated with Eq. (1) (see Ref. [30] for explicit
derivations).
However, this ideal scenario cannot be realized. Being

only coupled to x, the probe does not have access to the
evolution of η. Thus, both Iyη and Ṡa cannot be estimated
directly, nor the functional in Eq. (2). From the stochastic
trajectories seen by the probe, the only measurable quan-
tities are instead its information with the membrane Ixy and
the dissipation stemming from the observable DOFs Ṡxy.
Therefore, the probe must optimize an effective functional
Leff to determine its effective transduction coupling:

a�eff ¼ argmax
a

ðλIxy − ð1 − λÞTṠxyÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LeffðaÞ

; ð5Þ

which, in general, is different from a� [Figs. 2(a) and 2(b)].
Ixy and Ṡxy can be estimated as before, where Σ and D have
to be substituted by the submatrices Σxy and Dxy, and A by
the reduced interaction matrix,

Ared
xy ¼ Axy þCΣ−1

xy ; ðCÞij ¼ ðAÞiηðΣÞjη; ð6Þ

with i; j ¼ x, y. Ared
xy is the interaction matrix appearing in

the Fokker-Planck equation marginalized over η [30].
To evaluate the performance of transduction, we com-

pare the mutual information between the probe and the
bath in the ideal but unrealizable case Iyηða�Þ with the
same quantity when the coupling takes its effective value
Iyηða�effÞ [Fig. 2(c)]. We name Iyηða�Þ target information,
while Iyηða�effÞ is the transduced information that the probe
can effectively harvest. We analytically find that there
exists a range of σ for which the transduced information is
larger than the target information [Fig. 2(d)]. Since a�eff has
been set by optimizing the accessible quantities in Leff , this
unexpected result shows that transduction mechanisms
may boost information over the ideal scenario. However,
increasing σ, the membrane dynamics becomes dominated
by the bath, inducing, in principle, a larger probe-
membrane dissipation that cannot be counterbalanced

FIG. 1. (a) Sketch of the model. Membrane fluctuations x
transduce information from an active bath η to a probe y.
(b) Pareto front. Mutual information between y and η is
maximized while minimizing dissipation. Transduction strategies
correspond to different points on the optimal front. θη ¼ 5, σ ¼ 1.
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by Ixy. As a consequence, a�eff decreases to minimize Ṡxy,
and transduction first becomes inefficient and then dis-
appears [Fig. 2(d)].
Yet, information transduction happens at a cost. Efficient

transduction allows for more information to be harvested,
but remains a suboptimal solution in terms of the full-
knowledge functional due to the system being unable
to correctly estimate the balance between information
and dissipation [30]. Furthermore, the variance of Iyη,
computed as

varðIyηÞ ¼
ðΣÞ2yη

ðΣÞyyðΣÞηη
; ð7Þ

is also higher for efficient transduction, evidencing a
reduction in processing precision [see Fig. 2(e) and [30] ].
Analogously, the system exhibits higher dissipation in
the same region of parameters, since harvesting more
information requires more energy than in the ideal case
[Fig. 2(f)]. Overall, once the probe fixes the balance
between dissipation and information by choosing a strategy
λ, the possibility of tuning the energy consumption is
crucial for the onset of efficient transduction. Different
choices of λ will change the value of σ at which trans-
duction becomes inefficient, without qualitatively affecting
the results. At small values of θη, the active bath becomes a
fast variable, and thus its mutual information with both x
and y becomes negligible [9,17]. As a consequence, a� is
tuned to mainly minimize Ṡa, leading to vanishingly small

target information and dissipation in the ideal case. In [30],
we show that the crossovers between the different trans-
duction regimes are influenced by the timescales τx and τy,
which control how information propagates in the system
[17]. In particular, the emergence of efficient transduction
is related to how x shares information with y, and such
information tends to increase when τy ≲ τx.
Another pivotal complication that constrains the oper-

ations of biological systems is that they usually must tune
their parameters from stochastic trajectories observed on
the fly. In realistic scenarios, mutual information must
instead be computed from stochastic trajectories as

ixyðtÞ ¼ log
pxyðxðtÞ; yðtÞÞ

pxðxðtÞÞpyðyðtÞÞ
ð8Þ

where pxyðxðtÞ; yðtÞÞ, pxðxðtÞÞ, and pyðyðtÞÞ are the joint
and marginalized distributions of x and y evaluated on each
point of the trajectory fxðtÞ; yðtÞg. Clearly, Ixy ¼ hixyi and
varðIxyÞ ¼ hi2xyi − hixyi2, where the average is performed
over stationary trajectories [31–33]. Furthermore, we
assume that the probabilities in Eq. (8) are the empirical
probabilities estimated directly from trajectories. Then, the
probe can estimate dissipation along a single trajectory as

ṡxyðtÞ ¼ Ared
xy ∘ ðẋðtÞ; ẏðtÞÞT; ð9Þ

where ∘ indicates the Stratonovich product [34], and
Ṡxy ¼ hṡxyi by plugging into the reduced interaction matrix

FIG. 2. (a),(b) Optimal coupling in the ideal case (a�) and considering only the accessible DOFs (a�eff ) as a function of membrane-
bath interaction σ and activity timescale θη. (c) Target information Iyηða�Þ (blue) and transduced information Iyηða�effÞ (orange).
(d)–(f) Optimal transduction can boost information harvesting over the ideal case (d), at the expense of precision (e) and dissipation (f).
Regimes of inefficient transduction appear at increasing σ. At a critical membrane-bath coupling, transduction is ineffective; thus no
information can be harvested and dissipation comes only from the active bath. λ ¼ 0.9, and θη ¼ 50 for panels (d)–(f).
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between x and y, Eq. (9) [35]. Therefore, we can define
an effective functional that depends on the observation
time TA:

Ltrða; TAÞ ¼ λhixyiTA
þ ð1 − λÞhṡxyiTA

; ð10Þ

where averages are performed over trajectories of duration
TA. We name atr the coupling that maximizes Ltr.
Consider now a biological probe that continuously

adapts the probe-membrane coupling atrðNÞ, where N
indicates the number of adaptive steps it has undergone.
The probe stochastically selects a new coupling
atrðNÞ þ Δa, with Δa ∼N ð0; σaÞ. During a time TA, it
measures information and dissipation via Eqs. (8) and (9),
resulting in an estimate of Ltrða; TAÞ. Based on these
temporally limited observations, the adaptive probe tests
the performance of its coupling: if the estimated Ltrða; TAÞ
is larger than the previous one, it retains the proposed
coupling, i.e., atrðN þ 1Þ ¼ atrðNÞ þ Δa; otherwise it
discards it, and atrðN þ 1Þ ¼ atrðNÞ. The dynamics pro-
ceeds until no new adaptive move is accepted for a
sufficiently long stopping time; we assume that the system
begins with no probe-membrane coupling. This adaptive
dynamics (see Ref. [30] for details) leads the system to
converge to a coupling that approaches the maximum of
Leff for large measurement times TA [Figs. 3(a) and 3(b)].
As TA increases, both the number of adaptive steps until
convergence and the variance among different realizations

decrease, whereas at small TA the uncertainty on the
empirical probability estimation leads to spurious values
of Ixy [insets of Fig. 3(a)]. Indeed, the precision of
information transduction,

PðNÞ ¼ hiyηi2TA

hi2yηiTA
− hiyηi2TA

; ð11Þ

increases with TA [Fig. 3(c)[. In [30], we show that the
results remain qualitatively similar if the true probability
distribution is used instead of the empirical one.
Finally, we employ our framework to study transduction

in red blood cells. Membrane flickering of RBCs is a well-
known phenomenon [37] that takes place out of equilib-
rium in healthy cells and, as such, dissipates energy [25].
Flickering might tune cell-cell interactions [8], promote
protein mobility on the membrane [38,39], and facilitate
protein uptake [40]. All these processes are instrumental in
establishing robust cellular functions, and their mecha-
nisms are encoded in the motion of the outer membrane.
Therefore, a pivotal question is understanding when and
how membrane flickering carries information on the
internal active cytoskeleton [41], transduced through the
membrane layers of the lipid bilayer. Thus, even if our
framework does not include details on the biochemical
structure of RBCs, it may represent an effective tool to
shed light on how the cells dissipate energy to transduce
information. To this end, we consider a recent model that
was shown to quantitatively capture dynamic and thermo-
dynamic properties of RBCs flickering [42], and that is
remarkably similar to Eq. (1), with the addition of a
reciprocal interaction kint between the inner and outer
membrane layer [Fig. 4(a)] [30]. We include the mobility
of both membrane layers, μx and μy, and we enforce the
fluctuation-dissipation relation to fix the diffusion coeffi-
cients, Dx ¼ β−1μx and Dy ¼ β−1μy, with β ¼ ðkBTÞ−1, kB
the Boltzmann constant and T the temperature. The
cytoskeleton now plays the role of the hidden DOF η.
The inner membrane is the transducing degree of freedom
x, while y is the outer membrane. Experimental data from
optical sensing, microscopy, and trapping allowed for direct
measurement of all model parameters in [42]. Using such
estimations, we find a net distinction between passive and
healthy (active) RBCs. Crucially, active RBCs exhibit
substantially higher values of heat dissipation and the mutual
information Iyη between the outer membrane and the
cytoskeleton, indicating that information is being transduced
through the lipid bilayer [red points in Fig. 4(a)].
The estimated energy dissipation of each RBC stems

from the coupling between the cytoskeleton and inner
membrane only. Therefore, we can infer the value of λ that
allows information transduction from the cytoskeleton to
flickering and is compatible with the measured energy
budget. In practice, we determine λ for each RBC such that
the experimental kint corresponds to the maximum of Leff .

FIG. 3. (a) Increasing the observation time TA, the probe
adaptive dynamics approaches the maximum of Ltr. Diamonds
represent average values of the functional, and insets show the
optimal coupling and estimated information for two values of TA

(102 and 104) versus the number of adaptive steps N for 320
realizations. At small TA, uncertainties in the empirical distri-
bution estimation lead to nonzero Ixy even for a ≈ 0. (b),(c)
Optimal coupling (b) and information precision (c) estimated
from stochastic trajectories at the final step N ¼ Nf for increas-
ing TA. The shaded area indicates one standard deviation.
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We find that the strategy becomes more information driven,
i.e., λIxy ≫ ð1 − λÞṠxy, for more active RBCs [Fig. 4(c)].
This shows that the internal parameters are tuned so that the
higher the available energy, the greater the information that
membrane flickering harvests from the active cytoskeleton.
We also uncover an intriguing relationship between
mechanical stress and transduction efficiency. First, we
compute the target information, Iyηðk�intÞ, at the same value
of λ [gray dots in Fig. 4(b)], where k�int is the optimal
coupling that the RBC would choose if the outer membrane
had direct access to the state of the cytoskeleton, maxi-
mizing Eq. (2). This comparison is analogous to the one
shown in Fig. 2(d). Among active RBCs, we find that
transduction is inefficient in experiments performed with
optical microscopy, while optical sensing is associated with
an efficient regime [Fig. 4(b)]. Indeed, in these two
settings, cells are held in their position with different
setups (details about the experiments are found in [42])
and exhibit different mechanical properties known to
crucially affect their functional behavior [43–45]. This
naturally translates into the change in the transduction
performance highlighted by our framework, suggesting a
promising path for functional investigations of biological
systems in different conditions.
In this Letter, we uncovered how biological systems

can harvest information on hidden DOFs by tuning their
couplings to accessible observables. We found that, in
certain regimes, transduced information can overcome the
ideal case in which all the DOFs are known, even when
only finite-time stochastic trajectories can be measured.
These results hint at the existence of intrinsic and crucial
constraints on internal parameters of biological systems
that allow for efficient transduction mechanisms. We
applied our framework to evaluate, for the first time,

how membrane flickering in RBCs transduces information
from the cytoskeleton to the outer membrane, revealing an
intriguing link between mechanical stress and transduction
performances. In [30], we discuss possible ways to sub-
stantiate our choice for the optimization functional, such as
the evaluation of transduction efficiency along RBC mem-
brane and multivariate dynamical recordings. We also show
that eliminating an explicit constraint on the energy budget
leads to a diverging dissipation to maintain transduction
efficiency. Finally, extending our framework to path mutual
information between trajectories [46,47] will allow us to
study nonstationary conditions during real-time informa-
tion processing.
Our Letter can be extended to different biological

organisms, allowing for a deeper characterization of the
relationship between systems’ activity and functional
behaviors. Indeed, although dissipation is usually associ-
ated with healthy conditions, it is not necessarily tangled
with robust cellular function, such as efficient information
transduction. Ultimately, our results shed light on how
nonequilibrium conditions and information harvesting
shape biological systems.
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