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We investigate the synapse-resolution connectomes of fruit flies across different developmental stages,
revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This
power-law behavior significantly differs from the exponential distance rule previously observed in coarse-
grained brain networks. We demonstrate that the geometric scaling law carries functional significance,
aligning with the maximum entropy of information communication and the functional criticality balancing
integration and segregation. Perturbing either the empirical probability model’s parameters or its type
results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative
predictor for neuronal connectivity, incorporating only interneuronal distance and neurons’ in and out
degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the
understanding of how the brain operates optimally within its confined space.
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Introduction—The brain is a remarkable example of
complexity, with the human brain containing approxi-
mately 1011 neurons interconnected by around 1014 syn-
aptic connections [1–7]. Particularly awe-inspiring is the
emergence of a fully functional brain, as it self-organizes
without external guidance, hinting at the presence of as-yet-
unrecognized organizational rules. To unveil these hidden
rules, studies on neuronal networks, or connectomes, have
been crucial, leading to the discovery of important struc-
tural properties in brains across various species [8–16].
However, a sole focus on structural aspects overlooks the
brain’s inherent spatial nature, which is both constrained by
and capable of exploiting geometry [17–19].
In this Letter, we explore the geometric principles

underpinning neuronal networks by leveraging the data
of recently mapped synaptic-resolution connectomes of
fruit fly Drosophila [20–22]. These connectomes are
brainwide and of medium size, featuring 103 neurons in
the larval stage and 105 in adulthood. Importantly, they
exhibit a substantial degree of complexity in the connection
patterns between neurons. Our analysis reveals a distinct
power law governing the scaling of interneuronal connec-
tion probability with spatial distance, extending across
at least 2 orders of magnitude and persisting from

Drosophila’s larval stage to maturity. Empirical parameters
of this power law align with expectations for supporting
effective brain function, but deviations quickly degrade
these conditions. Thus, the dependence on the spatial
distance of neuronal connection probability appears key
to achieving the requisite performance in brain.
Geometric scaling law in the fruit fly neuronal networks—

We utilize three synaptic-resolution Drosophila connec-
tome datasets, specifically those of first instar larva [20],
adult hemibrain [21], and adult whole brain [22]. Focusing
on the existence of connections between neuron pairs and
excluding the small fraction of neurons for which the
spatial coordinates of somas are unavailable, our datasets
comprise 2515 neurons with 104 169 connections, 16 782
neurons with 2 372 717 connections, and 127 978 neurons
with 2 613 129 connections for the three connectomes,
respectively. We compute the Euclidean distance dij
between all pairs of neurons i and j based on their
three-dimensional position coordinates, regardless of the
presence of synapses between them. The connection
patterns between the neurons are represented by an adja-
cency matrix A, where Aij ¼ 1 indicates the existence of at
least one synapse from neuron j to neuron i, and Aij ¼ 0

otherwise. Hence, the count of neuron pairs separated
by distance d is given by nðdÞ ¼ P

ij δðdij; dÞ, where
the distances are logarithmically binned [23] (refer to*Contact author: gyan@tongji.edu.cn
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Supplemental Material [24], Sec. II). Within this count,
ncðdÞ ¼

P
i;j δðdij; dÞδðAij; 1Þ pairs are connected, where

δðx; yÞ is the Kronecker delta function [i.e., δðx; yÞ ¼ 1 if
x ¼ y, and δðx; yÞ ¼ 0 otherwise]. Therefore, the connec-
tion probability of neuron pairs separated by distance d is
expressed as pðdÞ ¼ ncðdÞ=nðdÞ.
Despite the distinct morphologies exhibited by the

three connectomes at various developmental stages
[Figs. 1(a)–1(c)], we analyze the histograms of nðdÞ and
ncðdÞ [Figs. 1(d)–1(f)], leading to the discovery of a
consistent power-law dependence of the connection prob-
ability pij between any pair of neurons i and j on the spatial
distance dij between them,

pij ∝ d−αij ; ð1Þ

whereα¼0.75, 0.85, and 0.70, respectively [Figs. 1(g)–1(i)].
This dependence suggests that connection probability decays
with spatial separation following a power law (refer to
Supplemental Material [24], Sec. II, for details), representing
a notable departure from the exponential distance rule
previously observed in the coarse-grained interareal brain
networks of various species [38–44] andwidely used in brain
models [45,46]. While a few generative models of brain
networks consider a power-law dependence of interareal
connection probability on spatial distance, the exponent is
often best-fitted to be larger than 3.0 [47–50], significantly
overestimating the strength of geometric constraints on net-
work topology. Taken together, the finding Eq. (1) unveils a
novel geometric scaling law, suggesting that there are many
more long-range connections at the neuron level compared
to macroscopic connectomes. This scaling law holds impor-
tant implications for the functions of brain networks, as
demonstrated below.
Geometric scaling law maximizes information

communication—We evaluate the functional implications
of the geometric scaling law from two perspectives. The
first involves assessing the information communication
capacity between neurons, a pivotal function of connec-
tomes that underpins various brain activities [51]. To
achieve this, we randomly sample 1000 neurons from
the entire connectome of adult Drosophila with their soma
coordinates in three dimensions and assign them in and out
degrees randomly drawn from the empirical distributions.
Subsequently, we connect each pair of neurons according to
the spatially dependent probability given by Eq. (1), allowing
for a tunable power-law exponent α (refer to Supplemental
Material [24], Sec. III, for network generation).
We use information entropy [52] to measure the com-

munication capacity between neurons. Specifically, the
information brought by a neuron j to a neighbor i can
be assessed by considering the neuron set comprised by j
and all its neighbors [53]. Therefore, the amount of
information collected by i is characterized by the entropy
of the entire set Li (see Supplemental Material [24],
Fig. S11), defined as [53]

ϕi ¼ −
Xn
j¼1

qj log qj: ð2Þ

Here, n is the total number of neurons in the network and qj
denotes the frequency of neuron j appearing in the set,
i.e., qj ¼ countðjjLiÞ=lengthðLiÞ.
Given that signal propagation between neurons con-

sumes metabolic energy, as indicated by path length [51],
we assign each neuron an amount of energetic cost k̄ d̄,
where k̄ is the average neuronal degree in the empirical
connectome, and d̄ is the average distance between all pairs

FIG. 1. Geometric scaling law in Drosophila connectomes.
(a)–(c) The three-dimensional positions of neuron somas in the
Drosophila larval brain, adult central brain (hemibrain), and adult
whole brain, respectively. (d)–(f) Histograms illustrating the
Euclidean distances between all neuron pairs [denoted as nðdÞ,
depicted in gray] and between connected neuron pairs [denoted
as ncðdÞ, depicted in color]. The unit of distance here is
nanometer. Each count represents the number of neuron pairs
with distances falling within a specific interval. Logarithmic
binning is used. (g)–(i) Each data point represents the connection
probability of neuron pairs separated by distance d, calculated as
pðdÞ ¼ ncðdÞ=nðdÞ. Best power-law and exponential fits using
the least-square regression are denoted by colored and gray
dashed lines, respectively, and refer to Fig. S3 in Supplemental
Material [24] for the fits using the maximum likelihood estima-
tion. The α values indicate the best-fit power-law exponents, with
α ¼ 0.75 (r2 ¼ 0.98) for larval brain, α ¼ 0.85 (r2 ¼ 0.99) for
adult central brain, and α ¼ 0.70 (r2 ¼ 0.91) for adult whole
brain. Each power-law fit encompasses the range of data points
aligned with the corresponding colored dashed line. The coef-
ficient r2 denotes the regression score R-squared, reflecting the
goodness of fit.
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of neurons (regardless of connection). Since k̄ d̄ represents
the average energetic cost when neurons are randomly
connected, we then investigate the information entropy
ϕ ¼ P

n
i¼1 ϕi=n under this cost constraint, as the exponent

α of the power-law dependence varies.
Because the connections between neurons are direc-

tional, we calculate both receiving and sending information
entropy. As depicted in Fig. 2(a), a narrow range of α values
balances the receiving and sending entropy, and interest-
ingly, the empirical α values of the three Drosophila
connectomes are all within this range. We also consider
connections as bidirectional and find that the information
entropy reaches the maximum when α is around 0.8
[Fig. 2(b)], close to the three empirical values. The
converging results indicate that power-law spatial depend-
ence Eq. (1) optimizes the diversity of information propa-
gating in connectomes, consistently maximizing the
communication capacity of Drosophila brain.
Geometric scaling law gives rise to functional criticality—

Next, we evaluate the functional implications of the geo-
metric scaling law from the perspective of neural activity.
For this purpose, on the network of 1000 sampled neurons
connected by the power-law spatial dependence described
above, we assign each connection a weight randomly
drawn from the empirical distribution, and perform simu-
lations of two dynamical models: the Hindmarsh-Rose [54]
and the FitzHugh-Nagumo [55] neuronal dynamics (refer
to Supplemental Material [24], Sec. IV, for dynamical
simulation details). We are particularly interested in exam-
ining the influence of spatial dependence on functional
segregation and integration [56–58]. Brains exhibit mod-
ules, which are densely connected sets of neurons.

However, these modules also need to work integrally to
coordinate functions globally. Thus, the balance between
segregation and integration is crucial for the functioning
of brains.
Based on simulated activity of each neuron, we compute

the covariance fij of the temporal activity for any pair of
neurons i and j. Subsequently, we quantify the strength
of functional segregation and integration using the mean
participation coefficient (MPC) metric [44]

MPC ¼ 1

n

Xn
i¼1

�
1 −

XS
s¼1

�
cis
ci

�
2
�
: ð3Þ

Here, cis ¼
P

j∈ s fij is the sum over neuron j in module s,
ci ¼

P
S
s¼1 cis is the sum of all functional covariance

involving neuron i, and S is the total number of structural
modules detected using the Louvain’s algorithm [59]. Low
MPC values indicate functional separation, where neurons
mainly engage within their own modules. In contrast, high
MPC values imply functional integration, where neurons
interact extensively across modules.
As shown in Figs. 3(a) and 3(b), there is a critical

transition from high to lower MPC for both dynamical
models when varying the exponent α of the power-law
spatial dependence. Notably, the empirical α values all fall
within the range where the transitions occur, identified by
the susceptibility analysis (refer to Fig. S7 in Supplemental
Material [24]). This phenomenon remains unchanged when
adjusting the excitability parameter and coupling strength
of the neuronal dynamics model or setting a fraction of
links to be inhibitory (refer to Figs. S12 and S13 in
Supplemental Material [24]). We introduce perturbations
to the spatial dependence by incorporating an exponential
cutoff with coefficient λ into Eq. (1) (refer to Supplemental
Material [24], Sec. III). The parameter λ denotes the
strength of the exponential cutoff, thus the spatial depend-
ence tends toward an exponential decay with increasing λ.
As illustrated in Figs. 3(c) and 3(d), even a small increase
in λ abolishes the critical transitions, suggesting that the
connectomes rely on a power-law, rather than exponential,
geometric constraint to sustain criticality and maintain the
functional flexibility of the Drosophila brain.
Explicit quantitative predictor for neuronal connectivity—

Finally, we are curious about the extent to which spatial
dependence shapes neuronal connections. Hence, for each
connectome, we randomly sample a substantial number
of neuron pairs—half connected and half unconnected.
Using the random forest algorithm [60], a machine learning
approach, we aim to predict the presence of directional
connection from any neuron j to any neuron i based on
only five features including spatial distance dij, in degrees
kini and kinj , as well as out degrees k

out
i and koutj [Fig. 4(a)].

The results indicate high prediction accuracy: 81.0% for
larva, 83.6% for adult hemibrain, and 96.4% for whole

FIG. 2. Geometric scaling law maximizes information entropy
of communication across connectome. (a) The sending and
receiving information entropy averaged over all neurons versus
the varying exponent α, with each neuron assigned an energetic
cost of k̄ d̄. The empirical α values of the three connectomes are
marked by colored arrows. The shaded region denotes the range
centered around the mean of two peaks with a width of 0.4.
(b) The average information entropy considering all connections
bidirectional versus the varying exponent α. The shaded region
denotes the range centered around the peak with a width of 0.4.
Error bars represent standard deviation obtained from 1000
independent runs of neuron sampling and network generation.
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adult connectome [Fig. 4(b)]. Despite the high structural
complexity of connectomes, random forest achieves
remarkable accuracy, suggesting an underlying simple
principle governing connection patterns. This motivates
us to further explore for an explicit quantitative predictor of
the connection probability between neurons.
When evaluating the likelihood of a connection from

neuron j to neuron i, three features—dij, kini , and koutj —
emerge as important [Fig. 4(c)]. Given the discovered
spatial dependence in Eq. (1), our attention turns to
investigating the impact of kini and koutj . The analysis
reveals a relationship captured by

pij − ϵ ∝ ðkini koutj Þβ; ð4Þ

where the exponent β equals 1.14, 0.93, and 0.86 for
the three connectomes, respectively [Figs. 4(d)–4(f)]. Here,

ϵ represents the saturation probability for kini k
out
j < k̄,

i.e., when the product kini k
out
j is smaller than the average

degree k̄, the connection probability reaches a saturation
level ϵ and ceases to decay further (refer to Fig. S9 in
Supplemental Material [24]). It is noteworthy that the three
β exponents are all close to 1.0, i.e., a neuron’s attraction is
approximately proportional to its degree, consistent with
observations in many complex networks [61,62].

FIG. 3. Geometric scaling law induces functional criticality. (a),
(b) Two dynamical models, namely the Hindmarsh-Rose and
the FitzHugh-Nagumo neuronal dynamics, are simulated on the
1000-neuron weighted networks. The mean participation coef-
ficient (MPC) is computed from the simulation data of neuronal
activity using Eq. (3), where higher MPC values indicate func-
tional integration and lower MPC values indicate functional
segregation. Error bars represent the standard deviation obtained
from 100 independent runs of network generation and dynamical
simulation. The empirical α values of the three connectomes are
marked by colored arrows. (c),(d) An exponential cutoff with
coefficient λ is introduced into the power-law spatial dependence
Eq. (1) to explore changes in MPC for varying α and λ, where λ
denotes the strength of the exponential cutoff. The MPC is
calculated respectively for the Hindmarsh-Rose (c) and the
FitzHugh-Nagumo (d) dynamical models, showing that the
critical phase transition from higher to lower MPC disappears
when λ is larger than about 0.5 × 10−5.

FIG. 4. Explicit quantitative predictor for neuronal connectiv-
ity. (a) Five features are used to predict the presence or absence of
a directional connection from neuron j to neuron i, including
spatial distance dij (depicted by red dashed line), in degrees kini
and kinj (representing the number of incoming connections to each
neuron), as well as out degrees kouti and koutj (representing the
number of outgoing connections from each neuron). (b) Predic-
tion accuracy achieved by the random forest algorithm (81.0%,
83.6%, and 96.4%) and by the explicit quantitative predictor
Eq. (5) (77.7%, 81.5%, and 95.1%). The training of the random
forest algorithm employs fivefold validation. Accuracy is as-
sessed using the AUC metric (area under the receiver operating
characteristic curve). For each connectome, the prediction set
comprises all connected neuron pairs and an equivalent number
of randomly sampled unconnected neuron pairs, resulting in a
random guess accuracy of 50%. (c) Feature importance revealed
by the random forest algorithm. (d)–(f) Probability pij − ϵ plotted
against the product kini k

out
j , where ϵ denotes the saturation as

described in the main text. Dashed lines indicate the fits of Eq. (4)
by least-square regression. Each fit encompasses the range of
data points aligned with the corresponding colored dashed line.
(g)–(i) The right side of Eq. (5) is abbreviated as Qij. The dots
represent pij values directly computed from the empirical data of
three connectomes. The solid lines represent the explicit quanti-
tative predictor Eq. (5), rather than fitting.
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By combining Eqs. (1) and (4), we derive an explicit
quantitative predictor for the likelihood of neuronal con-
nections,

pij ∝ ½ðkini koutj Þβ þ k̄β�d−αij : ð5Þ

Detailed derivation is available in Supplemental
Material [24], Sec. V. The specific values of the two
parameters α and β in Eq. (5) are determined by our
analysis above. As shown in Figs. 4(g)–4(i), the quantita-
tive relationship in Eq. (5) agrees well with the empirical
data of the three connectomes. Remarkably, when applying
the explicit relationship to predict neuronal connectivity, it
achieves accuracy comparable to that of the random forest
algorithm [Fig. 4(b)].
Discussion—In this Letter we have revealed a consistent

scaling law between connection probability and spatial
distance in the neuronal networks of fruit fly Drosophila
across different developmental stages. This power-law
decay behavior significantly differs from the exponential
distance rule observed in coarse-grained interareal brain
networks, highlighting a considerably higher probability
of long-range connections between distant neurons than
previously thought. By incorporating spatial dependence
and considering neurons’ degrees, we have derived an
explicit quantitative predictor for the neuronal connection
pattern. The interpretable predictor does not need intensive
training but can achieve comparable accuracy to a
black-box machine learning algorithm, emphasizing its
effectiveness in capturing the fundamental laws governing
Drosophila connectomes.
Despite the inherent complexity of connectomes, we have

demonstrated that the geometric scaling law alone carries
important functional implications. It enables the brain to
reach the maximum capacity for information communication
and to operate around critical states that balance network
integration and separation. These results align with the
hypothesis that the brain works at the edge of a critical
phase transition between order and disorder [63–68].
Our work raises intriguing questions for future research.

First, our analysis considered the presence or absence of
connections between neuron pairs. Future studies could
extend this analysis to include connection weights, incor-
porating factors such as the number of synapses [69], which
might help resolve discrepancies in the connection-distance
relationship at different scales [38–44,70]. Second, while
we used Euclidean distance between neuron somas, future
research might delve into synaptic morphology, including
the length of axons. Third, it is worthwhile to explore
the relationship between the connection-distance depend-
ence discovered in this study and the log-dynamics
phenomena [71] through more detailed simulations of
neuronal activity. Last, a recent study showed that spatially
embedded artificial neural networks can generate a variety
of architectural and computational features similar to those

of real brains [72], hinting at new opportunities for
developing brain geometry-inspired artificial intelligence.
These endeavors will contribute to a more comprehensive
understanding and broader applications of the geometric
aspects of brain connectomes.
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