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Rotating black holes can produce superradiant clouds of ultralight bosons. When the black hole is part of
a binary system, its cloud can undergo resonances and ionization. These processes leave a distinct signature
on the gravitational waveform that depends on the cloud’s properties. To determine the state of the cloud by
the time the system enters the band of future millihertz detectors, we study the chronological sequence of
resonances encountered during the inspiral. For the first time, we consistently take into account the
nonlinearities induced by the orbital backreaction, and we allow the orbit to have generic eccentricity and
inclination. We find that the resonance phenomenology exhibits striking new features. Resonances can
“start” or “break” above critical thresholds of the parameters, which we compute analytically, and induce
dramatic changes in eccentricity and inclination. Applying these results to realistic systems, we find two
possible outcomes. If the binary and the cloud are sufficiently close to counterrotating, then the cloud
survives in its original state until the system enters in band; otherwise, the cloud is destroyed during a
resonance at large separations, but leaves an imprint on the eccentricity and inclination. In both scenarios,
we characterize the observational signatures, with particular focus on future gravitational wave detectors.
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I. INTRODUCTION

The advent of gravitational-wave (GW) astronomy has
opened up new opportunities to test fundamental physics.
One promising avenue focuses on the environments sur-
rounding black holes (BHs). When a binary inspiral is inside
a sufficiently dense medium, the orbital motion is modified,
and the resulting GW signal is affected accordingly [1].
Intermediate to extreme mass ratio inspirals form the perfect
test bed for this phenomenon, as (1) the perturbation from the
companion is not strong enough to completely disrupt the
environment and (2) the binary spendsmany orbital cycles in
band allowing environmental effects to build up throughout
the inspiral.1 Future GW detectors, such as LISA or the
Einstein Telescope, will be able to probe these types of
binaries [3–5] and potentially infer properties of the envi-
ronment from thewaveformwith great accuracy [6–16]. This
area of research has recently attracted conspicuous interest.
One intriguing type of environment is comprised of

ultralight bosons. Such particles are predicted from high
energy physics as a possible solution to the strong CP
problem (i.e., the QCD axion [17–19]), but they can also
arise from string compactifications [20,21] and have been
proposed as possible dark matter candidates [22–25]. As it

turns out, rotating BHs are unstable against perturbations of
the boson field. In particular, when the Compton wave-
length of the bosonic field is comparable to the size of the
BH, an efficient energy and angular momentum extraction
from the BH is possible. Consequently, a “cloud” is formed
around the BH, often referred to as a “gravitational atom.”
This process is termed superradiance and has been studied
extensively in the literature [26–29]. While superradiance
occurs for bosons of any spin, in this work we focus on
scalars, due to their simplicity and stronger theoretical
motivation. As no couplings to other standard model
particles are required, GWs form the ideal tool to study
gravitational atoms, especially since they have been shown
to exhibit a rich phenomenology in binary systems [30–38].
In particular, in previous works [31,33], it was found that

during a binary inspiral the cloud induces not only secular
effects, such as dynamical friction or accretion, but also
resonant behavior. At certain resonance frequencies, where
the orbital frequency of the binary matches the energy
difference between two eigenstates of the cloud, the
gravitational perturbation from the companion is resonantly
enhanced and a full transfer from one state to another can
be induced. The accompanied change in the angular
momentum of the cloud must then be compensated for
by the binary. Depending on the nature of the resonance,
this leads to floating or sinking orbits, where the cloud
releases or absorbs angular momentum from the binary,
and hence the inspiral is either stalled or sped-up.

1Although the impact of the environment is less strong, one
can also look for environmental effects in the equal mass ratio
case using the already available LIGO-Virgo data [2].
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Consequently, a potentially detectable dephasing is left in
the GW signal, the orbital frequency at which these
resonances happen can be predicted, and thus they serve
as a direct and unique probe of the properties of the cloud.
In addition to their floating or sinking nature, resonances
can be divided into three different types, depending on the
energy difference between the eigenstates involved. These
are called hyperfine, fine, or Bohr resonances, which occur
in this chronological order. The former two happen “early”
in the inspiral (at radii far larger than the cloud’s radius) and
are all of the floating type. These will thus only affect the
GW signal indirectly: the binary frequency is too low for
GW detectors to pick up the signal, but the resonance can
change the late-time evolution of the system. Conversely,
Bohr resonances happen “late” in the inspiral (at radii
comparable with the cloud’s radius) and can be either
floating or sinking. As these happen while the signal is in
band, they can affect the GW signal directly.
Due to the exciting observational signatures, variousworks

have studied these resonances. However, to date, they have all
made simplifying assumptions, which turn out to crucially
alter the behavior of the system. This includes ignoring the
backreaction from the resonance [39], assuming a quasicir-
cular and equatorial orbit, or including just the strongest
multipole of the gravitational perturbation [30,40–43].
A nonzero eccentricity was only considered in [44], yet at
a time when the behavior of the resonances had still not been
fully understood. In this work, we relax all of the aforemen-
tioned assumptions to study resonances in gravitational atoms
in full generality and use this to determine the evolution of the
cloud-binary system throughout the inspiral. Crucially, by
studying the nonlinear system, we find that there exists a
critical threshold above which an adiabatic floating reso-
nance is initiated. Below the threshold, there is a negligible
transfer, or a nonadiabatic resonance. Furthermore, we
discover mechanisms that induce a resonance breaking,
shutting down the transition before it is complete: these are
due to the decay of the state excited by the resonance, or to a
slow time variation of the parameters. Additionally, we allow
for generically inclined and eccentric orbits and study how
resonances impact the orbital parameters: while the eccen-
tricity is forced towards fixed points, the inclination angle is
always tilted towards a corotating configuration. Finally, we
take into account the impact of ionization [34–36] in the
evolution of the system and include all relevant multipoles.
Using these results, we lay out, for the first time, a

systematic study of resonances for realistic parameters,
focusing on intermediate and extreme mass ratios. Starting
from states commonly populated by superradiance, we
evolve the binary taking into account energy losses from
both GWs and ionization. By doing so, we determine the
resonant evolution of the cloud and the impact of the
resonances on the binary’s orbit. We find that, for generic
orbital configurations, the cloud is often destroyed early in
the inspiral. This is due to floating resonances that transfer

the cloud to states that decaymuch quicker than the duration
of the resonance. However, when the orbital inclination is
within a certain interval centered around a counterrotating
configuration, all hyperfine and fine floating resonances are
either nonadiabatic or break prematurely, allowing the cloud
to survive until it enters the Bohr regime. Conversely, we
find that all sinking resonances for typical parameters have a
negligible impact on the cloud. A schematic illustration of
these conclusions is given in Fig. 1.
To accurately model a binary inspiral in a nonvacuum

spacetime, one needs to combine secular effects, such as
dynamical friction, with resonant behavior. In a recent
work [36], we studied the former, whose associated energy
losses can be much larger than those emitted by GWs. In
this work, we combine these results with the resonant
behavior to obtain a self-consistent treatment of binary
inspirals in a gravitational atom. We hope these two works
serve as a guideline towards future studies in a fully
relativistic setup, which should be able to describe correctly
even the final stages of the inspiral. Recent work on
this [37] has already shown encouraging progress and
new insights in the rich phenomenology of the problem.
The new observational prospects discovered in this paper

are further elaborated in the companion Letter [45].

A. Outline

The outline of the paper is as follows. In Sec. II, we
briefly review our setup and introduce necessary definitions
and equations. Then, in Sec. III, we study resonances at the
nonlinear level, determining when they are adiabatic and
when they break, and extending the framework to eccentric
and inclined orbits. In Sec. IV, we discuss the different
types of resonances. Then, in Sec. V, we turn to a realistic
setting and unveil the full history of the cloud and binary as
function of the parameters. In Sec. VI, we discuss the
observational signatures this leads to. We conclude in
Sec. VII. Appendices A–D, and E contain technical details.

B. Notation and conventions

Wework in natural units,G ¼ ℏ ¼ c ¼ 1. The larger BH
has a mass M and dimensionless spin ã, with 0 ≤ ã < 1.
The mass and radial distance of the smaller object are
denoted by M� ≡ qM and R�, where q is the mass ratio,
while the orbital frequency is Ω, and the mass of the cloud
is Mc. The gravitational fine structure constant is α ¼ μM,
where μ is the mass of the scalar field. We write most of our
results in an explicit scaling form, with respect to the
following set of benchmark parameters: M ¼ 104M⊙,
Mc ¼ 0.01M, q ¼ 10−3, and α ¼ 0.2. The eigenstate of
the cloud, before encountering a resonance, will be denoted
by jnalamai, while any other eigenstate involved in the
resonance by jnblbmbi. The cloud’s wave function will
then be expanded in as a linear superposition of energy
eigenstates as jψi ¼ cajai þ

P
b cbjbi.
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II. SETUP

The goal of this section is to lay down our framework.
We closely follow a previous work [36], and thus we refer
the reader there for more details.
Via BH superradiance, bosonic fields can extract energy

and angular momentum from rotating BHs, analogous to
the Penrose process. The key condition for this process to
occur is that the boson’s frequency ωB is smaller than the
angular velocity of the event horizon ΩH, i.e., ωB < mΩH,
wherem is the azimuthal quantum number in the BH frame.
If the boson is massive, then the superradiantly amplified
waves can get trapped around the BH, allowing their
number to grow exponentially. In particular, when the
gravitational radius of the BH (rg) and the Compton
wavelength of the field (λc) are of the same order, i.e.,

α≡ rg
λc

¼ μM ≲ 1; ð2:1Þ

this growth becomes efficient on astrophysical timescales,
and a cloud of particles can build up around the BH. The
system is then often referred to as a gravitational atom.
In this work, we will stay in the nonrelativistic limit,

where the Klein-Gordon equation reduces to a Schrödinger
equation, and thus its solutions are the hydrogenic eigen-
functions, defined as

ψnlmðt; rÞ ¼ RnlðrÞYlmðθ;ϕÞe−iðωnlm−μÞt; ð2:2Þ

where n;l, and m are the principal, angular momentum,
and azimuthal quantum numbers, respectively. These sat-
isfy the usual relations, n > l, l ≥ 0, and l ≥ jmj, while
Ylm are the spherical harmonics and Rnl the hydrogenic
radial functions.
Due to the dissipative nature of the BH horizon,

the eigenstates of the cloud, written as jnlmi, are only
quasistationary and have complex eigenfrequencies, i.e.,
ωnlm ¼ ðωnlmÞR þ iðωnlmÞI. A certain eigenstate or mode
is superradiant when ðωnlmÞI > 0, which can only happen
if m > 0. The fastest growing mode is jnlmi ¼ j211i, and
the maximum mass the cloud can obtain is approximately
Mc ¼ 0.1M [46–48].
The energy of different modes are defined through the

real part of the eigenfrequency, which in the limit α ≪ 1
reads [49]

ϵnlm ≡ ðωnlmÞR
¼ μ

�
1 −

α2

2n2
−

α4

8n4
−
ð3n − 2l − 1Þα4
n4ðlþ 1=2Þ

þ 2ãmα5

n3lðlþ 1=2Þðlþ 1Þ þOðα6Þ
�
: ð2:3Þ

As we will see later, it is useful to define different types of
energy splittings: we say that two states have a Bohr
(Δn ≠ 0), fine (Δn ¼ 0, Δl ≠ 0), or hyperfine (Δn ¼ 0,
Δl ¼ 0, Δm ≠ 0) splitting. A schematic illustration of the

FIG. 1. Illustration of the possible outcomes of the resonant history of the cloud-binary system. The inspiral starts with the cloud in its
initial state, either j211i or j322i. Only systems ①–② whose inclination angle is within intervals χ1 and χ2 from the counterrotating
(β ¼ 180°) configuration are able to move past the hyperfine and fine resonances with the cloud still intact (green vertical lines). These
later give rise to observational signatures in the form of ionization and Bohr resonances. Others ③–④ are destroyed by the hyperfine or
fine resonances (red vertical lines). Binary systems that form at small enough separations may be able to skip early resonances ⑤.
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bound state spectrum of the gravitational atom is shown
in Fig. 2.
We work in the reference frame of the central BH with

mass M, where r ¼ fr; θ;ϕg and the coordinates of the
companion with massM� ¼ qM are R� ¼ fR�; θ�;φ�g. In
our conventions, the gravitational perturbation from the
companion in the Newtonian approximation is defined as

V�ðt; rÞ ¼ −
X∞
l�¼0

Xl�
m�¼−l�

4πqα
2l� þ 1

Yl�m� ðθ�;φ�Þ

× Y�
l�m� ðθ;ϕÞFðrÞ; ð2:4Þ

where

FðrÞ ¼
8<
:

rl�
Rl�þ1
�

ΘðR� − rÞ þ Rl��
rl�þ1 Θðr − R�Þ for l� ≠ 1;�

R�
r2 −

r
R2�

�
Θðr − R�Þ for l� ¼ 1:

ð2:5Þ

On a generic orbit, the perturbation (2.4) induces a mixing
between the cloud’s bound state jnblbmbi and another state
jnalamai through the matrix element [31,33],

hnalamajV�ðt; rÞjnblbmbi

¼ −
X
l�;m�

4παq
2l� þ 1

Yl�m� ðθ�;φ�ÞIrðtÞIΩðtÞ; ð2:6Þ

where Ir and IΩ are integrals over radial and angular
variables, respectively. The following selection rules need
to be satisfied in order for IΩ to be nonzero:

ðS1Þ m� ¼ mb −ma; ð2:7Þ

ðS2Þ la þ l� þ lb ¼ 2p; for p∈Z; ð2:8Þ

ðS3Þ jlb − laj ≤ l� ≤ lb þ la: ð2:9Þ

Furthermore, we will often expand the spherical harmonic
Yl�m� appearing in (2.6) in terms of the form Yl�g (π=2, 0)
(where g is a summation index), which is zero whenever l�
and g have opposite parity.

III. RESONANCE PHENOMENOLOGY

As first shown in [33], while the companion perturbs the
cloud at a slowly increasing frequency, transitions between
modes are induced, analogous to the ones described in
quantum mechanics by Landau and Zener [50,51]. This
process can exert a strong backreaction on the orbit, giving
rise to “floating” and “sinking” orbits. In this section, we
study these transitions for generic orbits and at the non-
linear level, by including the backreaction in the frequency
evolution self-consistently. We do not, however, worry
about the astrophysically relevant range of parameters just
yet, nor about whether the phenomena we discover here can
actually occur after well-motivated initial conditions. Such
“realistic” cases, to which we often refer to, will only be
defined and studied in Sec. V, where the general results

FIG. 2. Schematic illustration of the cloud-binary system. The primary object of mass M is surrounded by a superradiantly grown
scalar cloud of mass Mc. The secondary object of mass M� perturbs it through its gravitational potential, causing a mixing between
different states of the cloud. The blue and red regions are a faithful representation of the mass densities of the states j211i and j21−−1i
on the equatorial plane, but the BH size is not to scale. In the box, we show the bound state spectrum of the gravitational atom for the first
few values of n.
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found here will turn out to be crucial in determining the
evolution of the cloud-binary system.
In Sec. III A we review the setup and the well-known

results, which we extend to inclined and eccentric orbits in
Sec. III B. Then, in Sec. III C we include the backreaction,
thus coupling the resonating states to the evolution of the
binary parameters. The phenomenology of the resulting
nonlinear system is explored in Sec. III D and Sec. III E for
the floating and sinking cases, respectively.

A. Two-state resonances

The matrix element (2.6) of the gravitational perturba-
tion V� between two states jai ¼ jnalamai and jbi ¼
jnblbmbi is an oscillatory function of the true anomaly of
the orbit φ�,

hajV�ðtÞjbi ¼
X
g∈Z

ηðgÞeigφ� : ð3:1Þ

On equatorial corotating quasicircular orbits, the only
nonzero term is g ¼ mb −ma ≡ Δm (on counterrotating
orbits, g has opposite sign), and the coefficients ηðgÞ only
depend on time through ΩðtÞ. Restricting our attention to
the two-state system, the Hamiltonian is thus

H ¼
�

−Δϵ=2 ηðgÞeigφ�

ηðgÞe−igφ� Δϵ=2

�
; ð3:2Þ

where Δϵ ¼ ϵb − ϵa is the energy difference between jbi
and jai. As in [33], it is useful to rewrite (3.2) in a dressed
frame, where the fast oscillatory terms eigφ� are traded for a
slow evolution of the energies. This is done by means of a
unitary transformation,

�
ca
cb

�
¼

�
eigφ�=2 0

0 e−igφ�=2

��
c̃a
c̃b

�
; ð3:3Þ

where cj ¼ hjjψi (with j ¼ a, b) are the Schrödinger frame
coefficients, while c̃a and c̃b are the dressed frame
coefficients. Because jcij2 ¼ jc̃ij2, we will drop the tildes
in the following discussion. In the dressed frame, the
Schrödinger equation reads,

d
dt

�
ca
cb

�
¼ −iHD

�
ca
cb

�
;

HD ¼
�
−ðΔϵ − gΩÞ=2 ηðgÞ

ηðgÞ ðΔϵ − gΩÞ=2

�
: ð3:4Þ

When ΩðtÞ≡ φ̇� is specified, (3.4) determines the evolu-
tion of the population of the two states.
Without including the backreaction of the resonance on

the orbit, ΩðtÞ is exclusively determined by external
factors, such as the energy losses due to GW emission

or cloud ionization, which induce a frequency chirp. These
effects typically have a nontrivial dependence on Ω itself,
widely varying in strength at different points of the inspiral.
However, the resonances described by (3.4) are restricted to
a bandwidth ΔΩ ∼ ηðgÞ. This is typically narrow enough to
allow us to approximate the external energy losses, as well
as any other Ω-dependent function, with their value at the
resonance frequency,

Ω0 ¼
Δϵ
g
: ð3:5Þ

Around Ω0, we can linearize the frequency chirp and write
Ω ¼ γt. For concreteness, in this section we will assume
that external energy losses are only due to GWemission, in
which case,

γ ¼ 96

5

qM5=3Ω11=3
0

ð1þ qÞ1=3 : ð3:6Þ

It is particularly convenient to rewrite the Schrödinger
equation in terms of dimensionless variables and parameters:

d
dτ

�
ca
cb

�
¼ −i

�
ω=2

ffiffiffiffi
Z

p
ffiffiffiffi
Z

p
−ω=2

��
ca
cb

�
; ð3:7Þ

where the frequency chirp now reads ω ¼ τ, and we defined

τ ¼
ffiffiffiffiffiffiffi
jgjγ

p
t; ω ¼ Ω −Ω0ffiffiffiffiffiffiffiffiffiffi

γ=jgjp ; Z ¼ ðηðgÞÞ2
jgjγ : ð3:8Þ

The initial conditions at τ → −∞ we are interested in are
those where only one state is populated, say ca ¼ 1 and
cb ¼ 0. The only dimensionless parameter of (3.7) is the so-
called “Landau-Zener parameter” Z, which determines
uniquely the evolution of the system and its state at
τ → þ∞. In fact, the populations at τ → þ∞ can be derived
analytically and are given by the Landau-Zener formula:

jcaj2 ¼ e−2πZ; jcbj2 ¼ 1 − e−2πZ: ð3:9Þ

For 2πZ ≫ 1 the transition can be classified as adiabatic,
meaning that the process is so slow that the cloud is entirely
transferred from jai to jbi. Conversely, for 2πZ ≪ 1, the
transition isnonadiabatic, with a partial or negligible transfer
occurring.2

There is one final remark to be made before we proceed.
Dealing with two-state transitions is a good approximation
as long as the frequency width of the resonance, ΔΩ ∼ ηðgÞ,
is much narrower than the distance (in frequency) from the
closest resonance. The latter becomes extremely small for

2The adiabaticity of a resonance is not related to the adiaba-
ticity of the orbital evolution, which is always assumed to hold
throughout our work.
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hyperfine resonances, especially on generic orbits, where g
can take values different from Δm. In some cases,
formula (2.3) can indeed return an exact degeneracy of
two resonances, up toOðα5Þ. We have thoroughly checked,
by numerical computation of the eigenfrequencies up to
Oðα6Þ, that in all realistic cases the resonances are indeed
narrow enough for the two-state approximation to hold.

B. Resonances on eccentric and inclined orbits

We now extend the treatment of Sec. III A to orbits
with nonzero eccentricity or inclination, explaining what
changes for the resonant frequencies and the overlap
coefficients ηðgÞ.
Let us start with eccentric corotating orbits. In the

quasicircular case, Eq. (3.1) manifestly separates a “fast”
and a “slow”motion: the former originates from φ� varying
over the course of an orbit, while the latter is due to the
dependence of the coefficients ηðgÞ on ΩðtÞ (and can be
safely neglected). It will be helpful to work with a variable
that performs the same trick on eccentric orbits: the mean
anomaly

φ̃�ðtÞ ¼
Z

t
Ωðt0Þdt0: ð3:10Þ

Because φ� itself is an oscillating function of φ̃�, we can
write

hajV�ðtÞjbi ¼
X
g∈Z

η̃ðgÞeigφ̃� ; ð3:11Þ

where the coefficients η̃ðgÞ only depend on time through
ΩðtÞ. For simplicity, in the following discussion we will
drop the tildes, with the different definition of ηðgÞ for
nonzero eccentricity left understood.
For a given eccentricity ε ≠ 0, multiple terms of (3.11),

each corresponding to a different value of g, can be
nonzero. As a consequence, a resonance between two
given states can be triggered at different points of the

inspiral, at the frequencies ΩðgÞ
0 ¼ Δϵ=g, for any integer g

(provided that it has the same sign as Δϵ). The numerical
evaluation of the coefficients ηðgÞ requires to Fourier expand
V� in the time domain, at the orbital frequency Ω ¼ ΩðgÞ

0 .
This can be done with techniques similar to [36], where the
same matrix element was evaluated between a bound and
an unbound state. The coefficient ηðΔmÞ is special because it
is the only one with a finite nonzero limit for ε → 0, where
it reduces to its circular-orbit counterpart. For all other
values of g, instead, ηðgÞ vanishes for ε → 0. Even at
moderately large ε, the coefficient ηðΔmÞ remains signifi-
cantly larger than all the others.
Let us now look at circular but inclined orbits. Here, the

Fourier coefficients ηðgÞ acquire a dependence on the
inclination angle β, where β ¼ 0 and β ¼ π correspond

to the corotating and counterrotating scenarios. The func-
tional dependence can be readily extracted by evaluating
the perturbation (2.4) using the identity [52]

Yl�m� ðθ�;φ�Þ ¼
Xl�
g¼−l�

dðl�Þm�;gðβÞYl�g

�
π

2
; 0

�
eigΩt: ð3:12Þ

Here, dðl�Þm�;gðβÞ is a Wigner small d-matrix and is respon-
sible for the angular dependence of the coupling,

ηðgÞ ∝ dðl�Þm�;gðβÞ. Its functional form takes on a simple
expression in many of the physically interesting cases,
as we will discuss explicitly in Sec. IV. We thus see that

inclined orbits also trigger resonances atΩ ¼ ΩðgÞ
0 ¼ Δϵ=g,

but this time g can only assume a finite number of different
values. Similar to the eccentric case, g ¼ Δm is special

because it is the only case where dðl�Þ
m�;gðβÞ does not vanish

for β → 0, as the resonance survives in the equatorial
corotating limit. Similarly, in the counterrotating case
β → π, the only surviving value is g ¼ −Δm.
Similar techniques can be applied in the eccentric and

inclined case, where the overlap can be expanded in two
sums, each with its own index, say gε and gβ. We do not
explicitly compute ηðgÞ in the general case, as the under-
standing developed so far is sufficient to move forward and
characterize the phenomenology in realistic cases.

C. Backreaction on the orbit

We now include the backreaction on the orbit, allowing
for generic nonzero eccentricity and inclination. During a
resonance, the energy and angular momentum contained in
the cloud change over time: this variation must be com-
pensated by an evolution of the binary parameters, the
(dimensionless) frequency ω, eccentricity ε, and inclination
β. In turn, this backreaction impacts the Schrödinger
equation (3.7), which directly depends on ω. The result
is a coupled nonlinear system of ordinary differential
equations, describing the coevolution of the cloud and
the binary, which we derive in this section.
To describe the evolution of ω, ε, and β we need three

equations. These are the conservation of energy and of two
components of the angular momentum: the projection
along the BH spin and the projection on the equatorial
plane. The conservation of energy reads

d
dt
ðEþ EcÞ ¼ −γfðεÞ qM5=3

3ð1þ qÞ1=3Ω1=3
0

; ð3:13Þ

where γ was defined in (3.6) and the binary’s and cloud’s
energies are

E ¼ −
qM5=3Ω2=3

2ð1þ qÞ1=3 ;

Ec ¼
Mc

μ
ðϵajcaj2 þ ϵbjcbj2Þ; ð3:14Þ
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while the function

fðεÞ ¼ 1þ 73
24
ε2 þ 37

96
ε4

ð1 − ε2Þ7=2 ð3:15Þ

quantifies the dependence of GW energy losses on the
eccentricity [53,54]. Similarly, the conservation of the
angular momentum components requires

d
dt
ðLcosβþScÞ¼−hðεÞγ qM5=3

3ð1þqÞ1=3Ω4=3
0

cosβ; ð3:16Þ

d
dt
ðL sin βÞ ¼ −hðεÞγ qM5=3

3ð1þ qÞ1=3Ω4=3
0

sin β; ð3:17Þ

where

L ¼ qM5=3

ð1þ qÞ1=3
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p

Ω1=3 ;

Sc ¼
Mc

μ
ðmajcaj2 þmbjcbj2Þ; ð3:18Þ

and

hðεÞ ¼ 1þ 7
8
ε2

ð1 − ε2Þ2 : ð3:19Þ

Before proceeding, there are two issues the reader might
worry about. First, depending on the resonance, the spin of
the cloud during the transition might also have equatorial
components and should thus appear in (3.17). Second, the
BH spin breaks spherical symmetry, therefore, the equa-
torial projection of the angular momentum should not be
conserved. Clearly, in the Newtonian limit this is not a
problem, but one might still question whether it is con-
sistent to treat within this framework hyperfine resonances,
whose very existence is due to a nonzero BH spin in the
first place. We address both these issues in Appendix A,
where we justify our assumptions and proceed here to study
the dynamics of the previous equations.
Equations (3.13), (3.16), and (3.17) can be put in a

dimensionless form as follows:

dω
dτ

¼ fðεÞ − B
djcbj2
dτ

; ð3:20Þ

C
d
dτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p �
fðεÞ − B

djcbj2
dτ

�

þ B
Δm
g

djcbj2
dτ

cos β − hðεÞ; ð3:21Þ

C
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p dβ
dτ

¼ −B
Δm
g

djcbj2
dτ

sin β; ð3:22Þ

where we defined the dimensionless parameters

B¼ 3Mc

M
Ω4=3

0 ðð1þqÞMÞ1=3
qα

ffiffiffiffiffiffiffiffiffiffi
γ=jgjp ð−gÞ; C¼ 3Ω0ffiffiffiffiffiffiffiffiffiffi

γ=jgjp : ð3:23Þ

The Schrödinger equation (3.7) remains unchanged, but it
should be kept in mind that Z now depends on ε and β
through ηðgÞ (instead, the dependence on ω can still be
neglected if the resonance is narrow enough).
The parameter B controls the strength of the back-

reaction. As can be seen from (3.20), a positive B > 0
(i.e., g < 0 and Δϵ < 0) will slow down the frequency
chirp, giving rise to a floating orbit and generally making
the resonance more adiabatic. Conversely, B<0 (i.e., g > 0
and Δϵ > 0) induces sinking orbits and makes resonances
less adiabatic. By extension, we will refer to floating
resonances and sinking resonances to denote the type of
backreaction they induce. A summary of the main variables
used to describe the resonances and their backreaction is
given in Appendix E.

D. Floating orbits

Backreaction of the floating type (B > 0) turns out to be
the most relevant case for realistic applications, so we make
a detailed study of its phenomenology here. When the
backreaction is strong, the evolution of the system exhibits
a very well-defined phase of floating orbit. We are then
concerned with three aspects.
(1) Under what conditions is a floating resonance

initiated? We answer this question with a simple
analytical prescription, which is found and discussed
in Sec. III D 1.

(2) How does the system evolve during the float? This is
addressed in Sec. III D 2, where we study the
evolution of the eccentricity and inclination.

(3) When does a floating resonance end? In Sec. III D 3
we show that several phenomena can break (and
end) the resonance before the transition from jai to
jbi is complete and compute accurately the con-
ditions under which this phenomenon happens.

1. Adiabatic or nonadiabatic

From Sec. III A, we know that if B ¼ 0, then a fraction
1 − e−2πZ of the cloud is transferred during the resonances.
For 2πZ ≫ 1, this value is already very close to 1. Adding
the backreaction does not change this conclusion: the
resonance stays adiabatic and a complete transfer from
jai to jbi is observed. Assuming, for simplicity, quasicir-
cular orbits (ε ¼ 0), the duration of the floating orbit can be
easily read off (3.20):

Δtfloat ¼
Bffiffiffiffiffiffiffijgjγp ¼ 3Mc

M
Ω4=3

0 ðð1þ qÞMÞ1=3
qαγ

ð−gÞ: ð3:24Þ
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This is independent of the strength of the perturbation ηðgÞ
and corresponds to the time it takes for the external energy
losses to dissipate the energy of the two-state system. For
nonzero eccentricity instead, one must integrate fðεÞ over
time to determine the duration of the float.
The situation for 2πZ ≪ 1 is, in principle, much less

clear: with B ¼ 0 the resonance would be nonadiabatic, but
backreaction tends to make it more adiabatic. Let us once
again restrict to quasicircular orbits for simplicity. By
careful numerical study of Eqs. (3.7) and (3.20), we find
that the longtime behavior of the system is predicted by the
parameter ZB alone. Depending on its value, two qualita-
tively different outcomes are possible:

if 2πZ≪ 1 and

�
ZB< 0.1686… ⟶ very nonadiabatic;

ZB> 0.1686… ⟶ very adiabatic:

ð3:25Þ

In the upper case, a negligible fraction of the cloud is
transferred, and the time evolution of ω is almost exactly
linear. Conversely, in the bottom case, the cloud is entirely
transferred from jai to jbi, and ω is stalled for an amount of
time Δtfloat given by (3.24), during which it oscillates
around zero. Intermediate behaviors are not possible, unless
the value of ZB is extremely fine-tuned. Numerical
solutions of (3.7) and (3.20) are shown in Fig. 3, choosing
parameters in such a way to illustrate the two cases
in (3.25).
We can give an approximate derivation of the previous

result as follows. As long as jcbj2 is small enough, the

backreaction term in (3.20) is negligible, hence ω evolves
linearly, and the final populations approximate the Landau-
Zener result (3.9), giving jcbj2 ≈ 2πZ. As the unback-
reacted transition happens in the time window jτj ≲ 1, we
see from (3.20) that the backreaction becomes significant
when 1≲ B · 2πZ ⇒ ZB≳ 1=ð2πÞ ≈ 0.159…. Given the
minimal numerical difference between this coefficient and
the one given in (3.25), for simplicity we will often write
the relevant condition for an adiabatic resonance simply as
2πZB ≷ 1. The slow-down effect on the evolution of ωðτÞ
enjoys a positive-feedback mechanism: the slower ω
evolves, the more the transition is adiabatic, meaning that
jcbj2 is larger, which further slows down ωðτÞ and so on.
This explains why no intermediate behaviors are observed:
once the backreaction goes over a certain critical threshold,
the process becomes self-sustaining.
The picture outlined so far changes slightly when the

eccentricity is nonzero. First, if the binary had a constant
eccentricity ε0, we could simply replace γ → γfðε0Þ to
conclude that the critical threshold for adiabaticness
becomes

2πZB ≷ fðϵ0Þ3=2: ð3:26Þ

When the eccentricity is allowed to vary starting from the
initial value ε0, Eq. (3.26) still correctly predicts whether
the system enters a floating orbit phase. However, the
transfer might no longer be complete, as the resonance
might break. This aspect will be discussed in Sec. III D 3.

FIG. 3. Numerical solution of the nonlinear system (3.7)–(3.20). In both panels we set Z ¼ 0.001, whereas we choose the values of B
to be 169 (left panel) and 170 (right panel), slightly below or above the adiabaticity threshold (the limit value of ZB differs slightly from
the one given in (3.25), due to finite-Z corrections). In the left panel, a nonadiabatic transition is observed. Conversely, in the right panel,
we find an adiabatic transition and the consequent formation of a floating orbit, whose duration matches the predicted
Δtfloat ¼ B=

ffiffiffiffiffiffiffijgjγp
. The dotted lines represent the evolution of ω in absence of backreaction.
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2. Evolution of eccentricity and inclination

The left panel of Fig. 4 shows a numerical solution of the
coupled nonlinear equations (3.7), (3.20), (3.21), and (3.22)
for an equatorial corotating (β ¼ 0) but eccentric (ε ≠ 0)
system, undergoing a floating orbit with g ¼ Δm. The
state dynamics is largely similar to what we described in
Sec. III D 1. The most interesting new effect concerns the
evolution of the eccentricity, which can be seen to decrease
during the float, at a rate faster than the circularization
provided by GW emission. The same numerical solution is
shown as function of frequency in Fig. 5.

The evolution of the eccentricity during a float can be
studied analytically by plugging dω=dτ ≈ 0 into Eqs. (3.21)
and (3.22), which become

C
d
dτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
¼ Δm

g
fðεÞ cos β − hðεÞ; ð3:27Þ

C
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p dβ
dτ

¼ −
Δm
g

fðεÞ sin β: ð3:28Þ

FIG. 4. Floating (left panel) and sinking (right panel) resonances on eccentric orbits, with Δm=g ¼ 1. We display the value of the
frequencyω, the eccentricity ε, and the populations jcaj2 and jcbj2 as function of τ, obtained by solving Eqs. (3.7), (3.20), and (3.21) with
β ¼ 0 numerically. The parameters used for the floating case are Z ¼ 0.03, B ¼ 250, C ¼ 1000, while for the sinking case we used
Z ¼ 0.01, B ¼ −10000, C ¼ 100. The dotted lines represent the evolution of ω and ε in absence of backreaction. Even though the
impact of the resonance on the eccentricity might look mild, the effect is actually dramatic when seen as a function of ω, as
shown in Fig. 5.

FIG. 5. Same resonances as in Fig. 4, but now the evolution of eccentricity is shown as a function of the frequency, for floating (left
panel) and sinking (right panel) orbits. The dashed lines represent the vacuum evolution.
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For resonances with β ¼ 0 and g ¼ Δm, such as the one
shown in Figs. 4 and 5, a small-ε expansion leads to the
following solution:

εðtÞ ≈ ε0e−
22
18
γt=Ω0 : ð3:29Þ

This result should be compared to the GW-induced
circularization in absence of backreaction,

εðtÞ ≈ ε0e−
19
18
γt=Ω0 : ð3:30Þ

Therefore, not only is the orbit stalled at ΩðtÞ ≈Ω0 for a
potentially long time, given in (3.24), during which the
eccentricity keeps reducing, but it also goes down at a faster
rate than in the vacuum, as can be seen comparing (3.29)
with (3.30). The longer the resonance, the more the binary
is circularized.
This result holds for corotating resonances with g ¼ Δm,

which are the only ones surviving in the small-ε limit and
usually have the largest coupling ηðgÞ even at moderately
large eccentricities. The dynamics are different in other
cases. Remaining in the equatorial corotating case (β ¼ 0),
eccentric binaries can also undergo (usually weaker)
resonances where g ≠ Δm. In this case, (3.27) has a
different behavior: if jΔm=gj < 1, then there is a fixed
point ε > 0 such that if ε < ε, then ε increases, while if
ε > ε, then ε decreases. For example, for Δm=g ¼ 1=2, we
have ε ≈ 0.46, and the eccentricity approaches the fixed
point according to

εðtÞ ≈ 0.46þ ðε0 − 0.46Þe−3.49γt=Ω0 : ð3:31Þ

Floating resonances with jΔm=gj > 1 will instead circular-
ize the binary even quicker than (3.29). As ε decreases,
however, so does Z: eventually, the perturbation becomes
too weak, and the resonance stops, generically leaving the

cloud in a mixed state as the inspiral resumes. This aspect
will be discussed in Sec. III D 3.
The possibilities described so far are a particular case of

the general dynamics, which includes the evolution of the
inclination β. The flow induced by Eqs. (3.27) and (3.28) in
the ðε; βÞ plane is shown in Fig. 6, where the dynamics on
the x axis are described by Eqs. (3.29) (left panel) and
(3.31) (right panel). Perhaps the most striking feature of
Fig. 6 is the fact that the system is violently pulled away
from inclined circular orbits (y axis). In fact, dε=dτ diverges
for ε → 0 and finite β, meaning that the validity of
Eqs. (3.27) and (3.28) must somehow break down in that
limit. The explanation for this behavior is that it is
inconsistent to assume that the system undergoes an
adiabatic floating resonance on inclined circular orbits:
eccentricitymust increase before the onset of the resonance.
This is precisely the behavior observed in Fig. 7, where
Eqs. (3.7), (3.20), (3.21), and (3.22) are solved numerically
starting from ε0 ¼ 0 and β0 ≠ 0. If 2πZB > fðε0Þ3=2, then
the system enters the floating orbit and starts to follow the
trajectories shown in Fig. 6. The total “distance” in the
ðβ; εÞ plane traveled by the system by the time the transition
completes depends on a single dimensionless “distance
parameter,”

D≡ B
C
¼ γΔtfloat

Ω0

: ð3:32Þ

However, it is also possible that the transition stops before
fully completing, as shown in Fig. 7 (right panel). This is
the subject of Sec. III D 3.

3. Resonance breaking

When some parameters are allowed to vary with time, the
floating orbit dynamics described in Secs. III D 1 and III D 2
feature a new phenomenon, which we call resonance break-
ing, and has been shown already in Fig. 7 (right panel).

FIG. 6. Flow in the eccentricity-inclination plane ðε; βÞ determined by Eqs. (3.21) and (3.22) under the assumption that the system is
on a floating orbit, i.e., djcbj2=dτ ¼ fðεÞ=B, for two different values ofΔm=g. The highlighted arrow [red] roughly depicts the trajectory
followed by the system in Fig. 7.
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The goal of this section is to determine analytically under
which conditions a floating resonance breaks. Three different
cases of parameter variation are encountered in realistic
scenarios.
(1) The binary eccentricity ε changeswith time, as seen in

Fig. 7. The eccentricity is the only binary parameter
that appears explicitly in (3.7) and (3.20), while a
change in β only acts through a variation of Z.

(2) As a consequence of changing ε and β, the strength
of the perturbation ηðgÞ, and thus the Landau-Zener
parameter Z, changes as well.

(3) The total mass of the cloud changes with time if state
jbi has ðωnlmÞI ≠ 0: as a consequence, the Schrö-
dinger equation (3.7) is modified to

d
dτ

�
ca
cb

�
¼−i

�
ω=2

ffiffiffiffi
Z

p
ffiffiffiffi
Z

p
−ω=2− iΓ

��
ca
cb

�
; ð3:33Þ

where Γ≡ ðωnlmÞI=
ffiffiffiffiffiffiffiffiffiffi
γ=jgjp

, and care must be paid
in the definition of B.

All three effects come with two possible signs, one of which
“weakens” the resonance and potentially breaks it, while the
other “reinforces” it: in the first categorywe have the increase

of eccentricity, the decrease of Z, and the cloud decay
(Γ < 0).3

To understand under what conditions a resonance breaks,
it is insightful to study the evolution of ω during the float.
To zeroth order, ω is identically zero, but Figs. 3–4 and 7
hint towards a nontrivial dynamics to higher order, with
small oscillatory features of varying frequency. Let us try to
find an equation of motion for the sole ω, in the vanilla case
with dε=dτ ¼ dZ=dτ ¼ Γ ¼ 0, where no resonance break
is expected. By taking the derivative of (3.20) and repeat-
edly using Schrödinger’s equation, we find

d2ω
dτ2

¼−B
djcbj2
dτ2

¼−2ZBð1−2jcbj2Þþ
ffiffiffiffi
Z

p
Bðc�acbþcac�bÞω: ð3:34Þ

Remarkably, the equation of motion obeyed by ω closely
resembles a harmonic oscillator whose (squared) frequency
is −

ffiffiffiffi
Z

p
Bðc�acb þ cac�bÞ. It is thus natural to study this

quantity: by directly applying Schrödinger’s equation,
we find

FIG. 7. Numerical solution of Eqs. (3.7), (3.20), (3.21), and (3.22) with parameters Z ¼ 0.001, B ¼ 1000,D ¼ 4=3, and g ¼ Δm. For
simplicity we ignore that in realistic cases Z depends on the eccentricity, and we keep it constant instead. The system is initialized with
eccentricity ε0 ¼ 0. A complete transition is achieved when the initial inclination is β0 ¼ 115° (left panel), while a “broken resonance” is
observed when β0 ¼ 120° (right panel), with the float abruptly ending when (3.39) is satisfied. In both cases, the system follows the
trajectories indicated in Fig. 6 until the resonance ends or breaks.

3The superradiant amplification of state jbi, that is, Γ > 0, is
never encountered for floating resonances anyway.
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ffiffiffiffi
Z

p d
dτ

ðc�acb þ cac�bÞ ¼ ω
djcbj2
dτ

: ð3:35Þ

We notice that Eqs. (3.34) and (3.35) form a closed system
of ordinary differential equations (because in the vanilla
case jcbj2 ¼ ðτ − ωÞ=B), through which it is possible to
prove mathematically a number of interesting properties of
the system, such as the fact that at small Z the evolution is
entirely determined by ZB, as thoroughly described in
Sec. III D 1.
For the scope of this section it is, however, sufficient to

assume that the quantity c�acb þ cac�b evolves slowly during
a float, with a timescale of Δtfloat, similar to jcbj2.
Equation (3.34) can then be solved in a WKB approxima-
tion as

ω ≈
2

ffiffiffiffi
Z

p ð1 − 2jcbj2Þ
c�acb þ cac�b

þ AZ−1=8B−1=4

ð−c�acb − cac�bÞ1=4

× cos
�
Z1=4B1=2

Z
τ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c�acb − cac�b

p
dτ0 þ δ

�
; ð3:36Þ

where A is a constant, and δ is a phase. As the fast
oscillations average out, we can plug the first nonoscilla-
tory term of (3.36) into (3.35) and integrate to find
c�acbþcac�b≈−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð1−2jcbj2Þ2

p
. The resulting solution

for ω,

ω ≈ −
2

ffiffiffiffi
Z

p ð1 − 2jcbj2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − 2jcbj2Þ2

p þ oscillatory terms; ð3:37Þ

is well behaved for the entire duration of the float,
only diverging before (jcbj2 ¼ 0) or after (jcbj2 ¼ 1) the
resonance.
The same analytical approach can be applied to the cases

mentioned above, with varying ϵ or Z, or Γ ≠ 0. A “master
equation”, where all three effects are turned on at the same
time, is derived and shown in Appendix B. Here, we find it
more illuminating to study them one at a time. The outcome
in realistic cases may then be approximated by only
retaining the strongest of the three effects.
When the eccentricity is not a constant, the time derivative

of (3.20) contains the additional term dfðεÞ=dτ. As a result,
the equation of motion for ω and the expression of c�acb þ
cac�b are both modified. The final result, which has been
thoroughly checked against numerical solutions of the full
system (3.7)–(3.22), is

ω ≈
dfðεÞ
dτ − 2ZBð1 − 2jcbj2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZB2ð1 − ð1 − 2jcbj2Þ2Þ − ðfðεÞ2 − fðε0Þ2Þ
p
þ oscillatory terms: ð3:38Þ

If ε increases from its initial value ε0, then the denominator
can hit zero before the transition is complete, and the

resonance breaks. The population remaining in state jai
and the binary eccentricity at resonance breaking satisfy

4ZB2ðjcaj2 − jcaj4Þ ¼ fðεÞ2 − fðε0Þ2; ð3:39Þ

which can be compared with the numerical solution in Fig. 7
(right panel). Despite the simplicity of (3.39), a numerical
integration is still needed, in principle, to determine ε as
function of jcaj2, and so whether a resonance will break. We
can, however, make a simple conservative estimate by noting
that the left-hand side can be at maximum ZB2. If the system
follows a trajectory in the ðε; βÞ plane (cf. Fig. 6) that
significantly increases its eccentricity, such that

fðεÞ >
ffiffiffiffi
Z

p
B ð3:40Þ

at some point, then the resonance must necessarily break.
If, instead, Z is allowed to vary while ε is kept constant,

then new terms appear when taking the time derivative of
the Schrödinger equation [used in the second equality of
(3.34)], and (3.36) becomes a damped harmonic oscillator.
Similar to the previous case, the resonance breaks when
c�acb þ cac�b ¼ 0, which is equivalent to

4ZB2ðjcaj2 − jcaj4Þ ¼ fðεÞ2
�
1 −

Z
Z0

�
: ð3:41Þ

We illustrate this phenomenon in Fig. 8 (left panel), by
solving numerically (3.7) and (3.20) while Z slowly
reduces over time. Analogous considerations as before
can be applied to extract from (3.41) the approximate point
of resonance breaking without performing a numerical
integration.
Taking into account a nonzero decay width Γ, while

keeping ϵ and Z constant, requires more care. Because
jcaj2 þ jcbj2 is no longer a constant, Eq. (3.20) is now
written as

dω
dτ

¼ fðεÞ − B
Δϵ

�
ϵa

djcaj2
dτ

þ ϵb
djcbj2
dτ

þ 2Γϵbjcbj2
�

¼ fðεÞ þ B
djcaj2
dτ

; ð3:42Þ

where the constant parameter B is computed according to
(3.23), using the value of the mass of the cloud before the
start of the resonance. Furthermore, due to the modified
Schrödinger equation, formula (3.35) becomes

ffiffiffiffi
Z

p d
dτ

ðc�acb þ cac�bÞ

¼ −ω
djcaj2
dτ

− Γ
ffiffiffiffi
Z

p
ðc�acb þ cac�bÞ: ð3:43Þ

As we will show later (cf. Fig. 10), in almost all realistic
cases state jbi decays much faster than the duration of the
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resonance, i.e., τdecay ≡ ð2ΓÞ−1 ≪ B. As a consequence, its
population jcbj2 during a floating orbit stays approximately
constant, at a value jcbj2 ¼ fðεÞ=ð2ΓBÞ, where the state
decay is balanced by the transitions from jai to jbi. As this
saturation value is typically very small, we will neglect it.
Under this assumption, we can solve (3.43) as

c�acb þ cac�b ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ZBjcaj2 − Γ

ΓZB2

r
; ð3:44Þ

and conclude that the resonance breaks when the remaining
population in the initial state is

jcaj2 ≈
Γ

2ZB
: ð3:45Þ

This result is confirmed by a numerical solution of (3.7)
and (3.20) with nonzero Γ, as shown in Fig. 8 (right panel).
Resonances where this quantity is larger than 1 do not
exhibit a floating orbit at all, showing an “immediate”
breaking.
We refer to the three types of resonance breaking as ε-

breaking, Z-breaking and Γ-breaking. A summary of the
respective conditions is given below.

ε-breaking Z-breaking Γ-breaking

fðεÞ≳ ffiffiffiffi
Z

p
B Z=Z0 ≲ 1 − ZB2=fðεÞ2 jcaj2 ≲ Γ=ð2ZBÞ

E. Sinking orbits

Let us now turn our attention to sinking orbits, corre-
sponding to B < 0, where backreaction tends to make the
resonance less adiabatic. This case turns out to not be as
dramatically relevant as floating orbits for the resonant

history of the system. However, it is important for direct
GW signatures. For this reason, we will only study the
aspects of it with observational consequences.
All the observable sinking resonances have 2πZ ≪ 1. In

this case, the final population in state jbi, as predicted by
(3.9), is very small, and this quantity is further reduced by
the backreaction. In the regime where this correction is
dominant, we can find a rough approximation for the total
population transferred by only keeping the backreaction
term in (3.20). Further assuming jcaj2 ≈ 1 and ċb ≈ 0, we
can substitute in the second component of (3.7) and obtain
jcbj2 ≈ ðZ=B2Þ1=3, where we assumed, for simplicity,
quasicircular orbits.4 This result is confirmed by numerical
tests, modulo a multiplicative factor: we find

B ≪ −
1

Z
; jcbj2 ≈ 3.7

�
Z
B2

�
1=3

: ð3:46Þ

This formula is accurate for 2πZ ≪ 1 and provides a slight
underestimate of the final population for moderately
large Z.
Sinking orbits backreact on the orbit by increasing both

the orbital frequency and the binary eccentricity, as shown
in Figs. 4 and 5 (right panels). At the same, time bothΩ and
ε feature long-lived oscillations after the resonance. These
oscillations slowly die out, so that a “jump” in the Ω and ε
is the only mark left after a long time. The nonmonotonic
behavior of Ω was already observed in [33], where it was
also speculated that sinking orbits could yield large
eccentricities (becoming “kicked orbits”). Our results
confirm that the oscillations are not an artifact of having

FIG. 8. Numerical solution of Eqs. (3.7) and (3.20) with (initial) parameters Z ¼ 0.001 and B ¼ 1000. A Z-breaking occurs when Z is
slowly reduced over time, with the resonance ending when (3.41) is satisfied (left panel). A Γ-breaking is observed when Z is kept fixed
but state jbi is given a nonzero decay width Γ ¼ 1.2, with the resonance ending when (3.45) is satisfied (right panel).

4The validity of the assumption will become clear in Sec. V.
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considered quasicircular orbits and further show that the
increase of the eccentricity is also not monotonic. However,
for the realistic cases analyzed in Sec. V, the increase in
eccentricity due to sinking orbits turns out to be negligible.

IV. THREE TYPES OF RESONANCES

Resonances can be divided in three distinct categories,
depending on the energy splitting between the two states, as
computed from (2.3). Hyperfine resonances occur between
states with same n and l but different m; they have the
smallest energy splitting and thus occur the earliest in the
inspiral, as the corresponding resonant orbital frequency is
smallest. Then, fine (same n, different l) and Bohr
resonances (different n) follow, the latter having the largest
splittings. The tools developed in Sec. III apply to all of
them: the character of a resonance is only determined by the
parameters 2πZ and B; its impact on eccentricity and
inclination is quantified byD, and its duration (in case it is a
floating resonance) is Δtfloat. In principle, the recipe to
determine the coevolution of the binary and the cloud is
clear: (1) pick the earliest resonance, (2) determine its
character and backreaction by computing Z, B, D, and
Δtfloat, (3) update the state of binary and cloud accordingly,
and (4) move to the next resonance and repeat. We will
indeed execute this algorithm in Sec. V. To be as generic as
possible and explore a wide parameter space, it will prove
useful to find the scalings of the relevant quantities withM,
Mc, q, α, and ã. Different types of resonances have
different scalings, so we analyze them here systematically.

A. Hyperfine resonances

Let us start with hyperfine resonances. From (2.3), we see
that the energy splitting (and thus the resonant frequency)
scales as Ω0 ∝ M−1α6ã. The corresponding orbital separa-
tion is R0 ∝ Mα−4ã−2=3. This strong α-dependence places
hyperfine resonances at distances parametricallymuch larger
than the cloud’s size. At such large orbital separations, the
cloud’s ionization is very inefficient, and thus the only
significant mechanism for energy loss is the GW emission.
As this too is a very weak effect, other phenomena might
potentially be relevant, including astrophysical interactions
connected to the binary formation mechanism. We will
postpone the discussion of these complications to Sec. V
and assume for now that formula (3.6) applies, giving a chirp
rate of γ ∝ qM−2α22ã11=3. This information is already
enough to determine the scaling of three key quantities:

B ∝
Mc

M
q−3=2α−4ã−1=2; Δtfloat ∝ Mcq−2α−15ã−7=3;

D ∝
Mc

M
q−1αã1=3: ð4:1Þ

The scaling of the Landau-Zener parameter Z depends
instead on the overlap coefficient ηðgÞ. Given the hierarchy

of length scales, R0 ≫ rc, the “inner” term in (2.5)
dominates the radial integral Ir. At fixed l� ≠ 1, we thus
have

ηðgÞ ∝ qαdðl�ÞΔm;gðβÞIr ¼ qαdðl�ÞΔm;gðβÞ
Z

∞

0

rl�

Rl�þ1
0

RnlðrÞ2r2dr

∝ M−1qα2l�þ5ã2ðl�þ1Þ=3dðl�ÞΔm;gðβÞ; ð4:2Þ

and so

Z ∝ qα4l�−12ãð4l�−7Þ=3ðdðl�ÞΔm;gðβÞÞ2: ð4:3Þ

The dipole l� ¼ 1 is an exception for two reasons: (a) its
inner term in (2.5) vanishes, (b) its “outer” term is not
simply rl�=Rl�þ1

� . However, hyperfine resonances connect
states with same l: from the selection rule (2.8), only even
values of l� contribute. We can thus safely ignore the
dipole. The rest of the multipole expansion can be seen as a
power series in the small parameter rc=R0, the smallest l�
giving the strongest contribution. Because selection rules
require l� ≥ jgj ¼ −g,5 a resonance with a given value of g
will be dominated by l� ¼ −g. The only two cases we will
encounter in Sec. V are

g ¼ −2 Z ∝ qα−4ã1=3ðdð2ÞΔm;gðβÞÞ2; ð4:4Þ

g ¼ −4 Z ∝ qα4ã3ðdð4ÞΔm;gðβÞÞ2: ð4:5Þ

Furthermore, the assumption l� ¼ −g allows us to write
the explicit expression for the angular dependence of Z as

dð−gÞΔm;gðβÞ ∝ sinΔm−gðβ=2Þ cos−Δm−gðβ=2Þ: ð4:6Þ

B. Fine resonances

Most of the assumptions made for hyperfine resonances
work in the fine case too. The resonant frequency now
scales as Ω0 ∝ M−1α5 and, similar to before, we arrive to

B ∝
Mc

M
q−3=2α−7=2; Δtfloat ∝ Mcq−2α−38=3;

D ∝
Mc

M
q−1α2=3: ð4:7Þ

The scaling of the overlap coefficient reads ηðgÞ ∝
qM−1αð4l�þ13Þ=3, and we get

Z ∝ qαð8l�−29Þ=3ðdðl�ÞΔm;gðβÞÞ2: ð4:8Þ

5Strictly speaking, this constraint only applies on circular
orbits. In general, the same inequality applies to gβ instead.
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The main difference with the previous case resides in the
possible values of l�. Fine resonances connect states with
different values of l, and most of the cases we will study in
Sec. V will have odd values of l�. For g ¼ −3, all the
previous arguments apply, and the octupole l� ¼ 3 is the
dominant contribution. For g ¼ −1, the extreme weakness
of the dipole at large distances again leaves the octupole as
the most important term because now l� ≠ −g, however,
the angular dependence will have a form different from
(4.6), which we will describe on a case-by-case basis in
Sec. V. There is one further exception to this: if
la þ lb ¼ 1, then the selection rule (2.9) forbids all
l� ≥ 2. Only in this case (corresponding to the j211i →
j200i resonance) the dipole is entirely responsible for the
coupling between the two states. Its anomalous expression
(2.5) endows ηðgÞ (and thus Z) with a nonpower law
dependence on α: given the peculiarity of this case, we
will treat it explicitly in Appendix D.

C. Bohr resonances

Bohr resonances are a different story. States with
different principal quantum number n have different
energies to leading order, meaning that the resonant orbits
are placed at distances comparable to the cloud’s size.
There is no parametric separation between the two, as now
R0 ∝ Mα−2 ∝ rc. At these orbital distances, the cloud’s
ionization is generally a more effective mechanism for
energy loss than GWs. We prove this point in Fig. 9, where
the position of several Bohr resonances is shown on top of
the ionization-to-GWs power ratio, computed as in [34–36]
on circular orbits. This latter quantity scales as

Pion

PGW

����
R�¼R0

∝
Mc

M
α−5: ð4:9Þ

With the possible exception of transitions to j100i, as they
happen extremely late in the inspiral, Bohr resonances and

ionization thus happen at the same time. This observation
raises two points.
(1) Formula (3.6) for the chirp rate γ is no longer

accurate, as ionization must now be included.
(2) The derivation of the expression for Pion laid down

in [34] assumes that the system is away from bound-
to-bound state resonances.

In Appendix C we extend the framework of [34] to describe
the ionization of a system actively in resonance. Although
this requires the addition of new terms, their effect is
generally negligible for realistic parameters. It is thus a
good approximation to simply adjust the value of γ by a
factor 1þ Pion=PGW ≈ Pion=PGW, where Pion is computed
as in [34–36]. The last approximation holds whenever
Pion ≫ PGW and is always satisfied, unless the resonance
involves j100i or the value of α is exceptionally large.
Under these assumptions, we arrive to

B∝
ffiffiffiffiffiffiffi
Mc

M

r
q−3=2; Δtfloat∝Mq−2α−3; D∝

Mc

M
q−1: ð4:10Þ

These quantities now also have a β-dependence, due to Pion
having different values for different inclinations. However,
we will see in Sec. V that this detail is not relevant, so we
neglect it here. As for the overlap ηðgÞ, there is now no clear
hierarchy of multipoles. Luckily, R0 has the same α-scaling
as the argument of the hydrogenic wave functions Rnl: with
an appropriate change of variable, we can show that

ηðgÞ ∝ M−1qα3dðl�Þ
Δm;gðβÞ: ð4:11Þ

The β-dependence in (4.11) can be written in terms of a
Wigner small d-matrix only when there is a single value of
l� that contributes. As this is the case for many of the Bohr
resonances we will encounter in Sec. V, we keep that factor
explicit here. Finally, the Landau-Zener parameter scales as

FIG. 9. Position of a few selected Bohr resonances, compared to Pion=PGW, i.e., the ratio of the ionization power to the power emitted
in GWs, shown here for a circular counterrotating orbit and for a cloud in the j211i (left panel) or j322i (right panel) state. We assumed
Mc=M ¼ 0.01 and α ¼ 0.2, but the relative position of the resonances and the shape of the curve do not depend on the parameters.
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Z ∝
M
Mc

qðdðl�Þ
Δm;gðβÞÞ2: ð4:12Þ

One particularly interesting aspect of Bohr resonances is
the disappearance of any α-dependence from the Landau-
Zener parameter Z and from the backreaction B. This is in
contrast with the steep power laws found for hyperfine and
fine resonances, and it means that the character of Bohr
resonances is much more universal.

V. RESONANT HISTORY OF THE CLOUD

In this section we draw a consistent picture of the
coevolution of the cloud and the binary, using the tools
developed in Secs. III and IV. Assuming a well-motivated
initial state of the cloud (generally j211i or j322i), an
astrophysically relevant range for α [see Eqs. (5.3) and
(5.11)], and small q, the plethora of phenomena described
in Sec. III only occur in recognizable and relatively simple
patterns. These constitute the realistic cases, which we
systematically explore in this section, with the goal of
understanding the state of the system by the time it
becomes observable: for example, when it enters the
LISA band. First, we discuss the generic behavior of the
different types of resonances in Sec. VA; then, in Secs. V B
and V C, we study explicitly the history for a cloud
initialized in the state j211i or j322i.

A. General behavior

The initial state jai ¼ jnalamai of the cloud, populated
by superradiance, generally has ma ¼ la ¼ na − 1. Within
the multiplet of states jnalami withm ≤ ma, this is the one
with highest energy, as can be readily seen from (2.3).
Hyperfine resonances, which occur the earliest in the
inspiral, thus necessarily have Δϵ < 0 and are of the
floating type. To understand their behavior, it is important
to keep in mind a few key points.

1. Adiabaticity

The first question to answer is whether a given hyperfine
resonance is adiabatic or not. We can apply the results of
Sec. III D 1. If 2πZB > fðεÞ3=2 then the resonance is
adiabatic: the binary starts evolving as described in
Sec. III D 2 until the transition completes after a time
Δtfloat, or the resonance breaks due to any of the conditions
derived in Sec. III D 3. Almost all hyperfine resonances
turn out to be adiabatic in the entire parameter space, except
in a narrow interval of almost counterrotating inclinations,
say π − δ1 < β ≤ π, where δ1 is the size of the interval. This
is because, on floating orbits, the resonance condition

ΩðgÞ
0 ¼ Δϵ=g forces g to be negative; on the other hand,

Δm ¼ m −ma < 0, and from (4.6) we see that for β → π
the parameter Z goes to zero as a (high) power of cosðβ=2Þ.
The explicit determination of the angle δ1 as function of the
parameters will be performed in Secs. V B and V C.

2. Cloud’s decay and Γ-breaking
After saturation of the dominant superradiant mode

jnalamai, all states of the multiplet jnalami with m ≠
ma have ImðωÞ < 0, meaning that they decay back in the
BH with an e-folding time tdecay ≡ j2ImðωnalamÞj−1. It is
thus necessary to compareΔtfloat and tdecay. One of the most
important results of this work is the following: for inter-
mediate or extreme-mass ratios, and typical values of Mc
and α, the decay timescale tdecay is many orders of
magnitude smaller than floating timescale, Δtfloat. It is
not easy to prove this statement in full generality, due to the
complicated dependence of tdecay on the parameters.
Nevertheless, for small α and ã, using the Detweiler
approximation [55] and the results from Sec. IVA, we have

tdecay
Δtfloat

∝
M
Mc

q2α10−4la ã4=3; ð5:1Þ

where ã ∝ α at the superradiant threshold. For α → 0 and
small enough values of la, this ratio becomes very small. In
fact, for small q, any possible value of α results in
tdecay ≪ Δtfloat. A more detailed comparison is given in
Fig. 10, where tdecay is computed numerically through
Leaver’s [56–59] and Chebyshev’s [49] methods for
various values of α, and the spin ã is set to correspond
to the boundary of the BH superradiant region.
This result has a dramatic consequence: hyperfine

transitions are never able to change the state of the cloud.
Instead, the portion that is transferred to state jbi decays
immediately back into the BH.6 The analysis of Sec. III D 3
then applies, and the resonance Γ-breaks when the fraction
of the cloud remaining in state jai falls below the threshold
determined in (3.45). In a relatively large portion of
parameter space, generally around counterrotating orbits,
that formula returns jcaj2 > 1, meaning that the resonance
Γ-breaks immediately. The outcome is effectively similar to
a nonadiabatic resonance, that never even starts the floating
phase. Similar to before, we will define an angular interval
π − χ1 < β ≤ π, within which the resonance is not effec-
tive. The ε-breaking and Z-breaking are instead less
relevant for realistic parameters.

3. The strongest resonance

As shown in Sec. III B, on eccentric and inclined orbits a
resonance between two given states is excited at many
different orbital frequencies, depending on the value7 of
jgj ¼ 1; 2; 3;…. The strength of the coupling also depends

6As a consequence, the mass and spin of the BH change. Our
framework is not able to capture this effect, which we accordingly
ignore in this work.

7As briefly mentioned in Sec. III B, two separate indices, say
gε and gβ, are necessary when both eccentricity and inclination
are not zero. However, this technicality is not crucial in under-
standing the history of the system.
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on ε and β. Keeping track of so many different resonances
would be very complicated. However, the hierarchy
tdecay ≪ Δtfloat implies that as soon as an adiabatic floating
resonance is encountered (and does not break early), the
cloud is destroyed. This means that studying the “strong-
est” resonance (the one that destroys the cloud in the largest
portion of parameter space) actually suffices to determine
the fate of the cloud.
Up to moderate values of the eccentricity, the coupling

ηðgÞ that remains nonzero in the limit of circular orbit is
much larger than all the others. We can then approximate
the “strongest resonance” by ignoring eccentricity alto-
gether. Regarding inclined orbits instead, we observe that
higher values of g require contributions from higher values
of the multipole index l�: at the separations of hyperfine
resonances, the lowest value of l� (typically the quadrupole
l� ¼ 2) produces the strongest coupling. Given two states,
we will then study the resonance with the smallest value
of jgj.
Applying the previous considerations to each possible

hyperfine resonance, we are able to determine whether the
cloud is destroyed in the process or survives to later stages
of the inspiral. However, the binary might be able to “skip”
hyperfine resonances for other reasons. This is because
some of them are placed at extremely large binary sepa-
rations: typically R�=M ≳Oð103Þ for a j211i initial state,
and R�=M ≳Oð104–105Þ for j322i. These distances are
large enough that not only other kinds of astrophysical
interactions may play a role, but their presence is in some
cases necessary, in order to bring the binary close enough
for the merger to happen within a Hubble time.
Quantitatively, for a quasicircular inspiral, the initial
separation as function of the time-to-merger t0 is given by

R�
M

¼ 2.3 × 104
�

t0
1010 yrs

�
1=4

�
M

104M⊙

�
−1=4

�
q

10−3

�
1=4

:

ð5:2Þ

In other words: if we want the binary to merge within a
Hubble time, we might be forced to assume that it “starts”
its evolution too close for hyperfine resonances to be
encountered, especially for a cloud initialized in the
j322i state. This can be achieved by a variety of formation
mechanisms, including dynamical capture [60,61] and
in situ formation [61–65].
If the system is able to skip through hyperfine resonances

because they are either all nonadiabatic, or they Γ-break
early, or the binary is formed at small enough separations,
then the cloud can be present when fine resonances are
encountered. Their phenomenology is largely similar to
hyperfine ones, as they too are all of the floating type. We
defer the discussion of some state-dependent aspects to
Secs. V B and V C. For the purpose of the present general
discussion, it suffices to say that, once again, the cloud can
survive this stage if π − δ2 < β ≤ π (for some angle δ2 to be
determined), if the resonance Γ-breaks early in an interval
π − χ2 < β ≤ π, or if the binary is formed in situ at very
small radii.
Finally, if the cloud makes it to this point, it becomes

potentially observable: the “Bohr region” can be in the
LISA band and is rich of signatures of the cloud. These
come in the form of ionization and Bohr resonances, the
vast majority of which are sinking and nonadiabatic. State-
dependent details will be discussed in Secs. V B and V C
and a summary of the observational signatures will be given

FIG. 10. Floating timescale Δtfloat (solid lines), compared to the decay timescale tdecay (dashed lines) of the final state, for some
selected resonances. We use benchmark parameters and determine the decay rate independently through Leaver’s continued fraction
method [56–59] and the Chebyshev method in [49]. Two resonances for a j211i initial state are shown (left panel), namely j211i →
j210i [blue] and j211i → j200i [orange]. Similarly, three resonances for a j322i initial state are shown (right panel), namely j322i →
j320i [blue], j322i → j311i [orange] and j322i → j211i [green]. The thick, normal, and thin lines indicate hyperfine, fine, or Bohr
resonances, respectively. Note the Bohr resonance falling outside of the ionization regime for large α, changing the scaling ofΔtfloat from
α−3 to α−8, as predicted by (4.10) and (4.9).
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in Sec. VI. A diagrammatic representation of the three
stages of the resonant history is shown in Fig. 1.
As a concluding remark, we note that the results derived

here and in Sec. III are specific to resonances involving two
states only. We have explicitly checked that this is the case
for the resonances discussed in the next sections, so we
apply the results of Sec. III without further modification.

B. Evolution from a j211i initial state
The j211i state is the fastest-growing superradiant mode

and represents therefore a natural assumption for the initial
state of the cloud. The requirements that the superradiant
amplification takes place, and does so on timescales no
longer than a Gyr, set a constraint on α:

0.02

�
M

104M⊙

�
1=9 ≲ α < 0.5: ð5:3Þ

Once grown, the cloud will decay in GWs with a rate
roughly proportional toMc

2α14, assuming the scalar field is
real. The resulting decay of Mc is polynomial, rather than
exponential in time; as such, we will not impose a further
sharp bound on α and treat Mc=M as an additional free
parameter.
There are two possible hyperfine resonances, with the

states j210i and j21 − 1i. Following the line of reasoning
laid down in Sec. VA, we ignore the fact that the same
resonances can be triggered at multiple points if the orbit is
eccentric. Both resonances are then mediated by g ¼ −2
and, they are positioned at

j211i ⟶g¼−2 j210i R0

M
¼ 8.3 × 103

�
α

0.2

�
−4
�

ã
0.5

�
−2=3

;

ð5:4Þ

j211i ⟶g¼−2 j21 − 1i R0

M
¼ 5.2 × 103

�
α

0.2

�
−4
�

ã
0.5

�
−2=3

;

ð5:5Þ

where the value of the spin should be set equal to the
threshold of superradiant instability of j211i, that is,
ã ≈ 4α=ð1þ 4α2Þ. Both resonances become nonadiabatic
in an interval π − δ1 < β ≤ π, with the strongest constraint
on δ1 given by j211i → j210i. The value of δ1 is deter-
mined from (3.26): this means setting 2πZB ¼ fðε0Þ3=2,
where ε0 is the eccentricity at the onset of the resonance,
and solving for β as function of the parameters. Making use
of the relations (4.1), (4.4) and (4.6), and evaluating
numerically the overlap ηð2Þ between the two states, we find

δ1 ¼ 7.5°

�
Mc=M
10−2

�
−1=6

�
q

10−3

�
1=12

�
α

0.2

�
4=3

�
ã
0.5

�
1=36

× fðε0Þ1=4: ð5:6Þ

Although j211i → j210i is also nonadiabatic in a neigh-
bourhood of β ¼ 0, such a corotating binary would still
encounter the adiabatic floating resonance j211i→ j21−1i
later, so that the only “safe” inclinations are in the
neighborhood of counterrotating determined in (5.6).
Having determined when hyperfine resonances can be

adiabatic, we now calculate where they break, using the
results of Sec. III D 3. As anticipated in Sec. VA, the
Γ-breaking is the most relevant mechanism of resonance
breaking. To assess its impact, we observe that, because
B ∝ Mc, Eq. (3.45) can be written as a relation for the final
mass of the cloud at resonance breaking, Mc

br ¼ Mcjcaj2,
which can be computed as a function of α and β. If
Mc

br > Mc is found, then the resonance breaks immedi-
ately as it starts, as if it was nonadiabatic. The value ofMc

br

as a function of α and β is shown in Fig. 11. Note that, in
principle, the resonance always Γ-breaks before the cloud is
completely destroyed, but its observational impact becomes
negligible when Mc

br is too small.
The combined constraints due to the Γ-breaking of

j211i → j210i and j211i → j21 − 1i imply that the cloud
survives in a neighborhood of β ¼ π, say π − χ1 < β < π,
similar to what we found for the adiabaticity of the
resonances. An analytical approximation of χ1 for j211i →
j210i based on Detweiler’s formula [55] is

χ1 ≈ 38°

�
Mc

br=M
10−2

�
−1=6

�
α

0.2

�
7=6

�
ã
0.5

�
−5=18

; ð5:7Þ

which significantly underestimates the result for large α, as
shown in Fig. 11. Because χ1 > δ1, this angular interval
overwrites (5.6) as the portion of parameter space where the
cloud survives hyperfine resonances.
Finally, we check whether hyperfine resonances can ε-

break or Z-break. Both ε and Z can vary significantly
during the float, so we use the relation (3.39) as an order-of-
magnitude estimate. For generic values of the inclination,
both hyperfine resonances have

ffiffiffiffi
Z

p
B∼106

�
Mc=M
10−2

��
q

10−3

�
−1
�

α

0.2

�
−6
�

ã
0.5

�
−1=3

: ð5:8Þ

The resonances ε-breaks if fðεÞ ¼ ffiffiffiffi
Z

p
B, which is only

satisfied at very high eccentricities, not smaller than 0.95
for typical parameters. Such extreme eccentricities are only
reachable if the initial inclination is very close to β ¼ π, as
can be seen from Fig. 6. But, as proved in (5.6) and (5.7),
near-counterrotating binaries do not undergo floating orbits
at all, due to the resonances being either nonadiabatic or
Γ-breaking immediately. As for the Z-breaking, one can
conservatively ignore the term Z=Z0 in (3.41), falling back
to the same relation as (3.39).
We conclude that the survival of the cloud to later stages

of the inspiral is exclusively determined by the Γ-breaking.
If the binary is outside the regions colored in Fig. 11, and
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computed in (5.7), it encounters the only possible fine
resonance:

j211i ⟶g¼−1 j200i R0

M
¼ 3.4 × 102

�
α

0.2

�
−10=3

; ð5:9Þ

whose angular dependence is determined through (4.6) as
usual. This resonance, however, has anomalous behavior
for two reasons:
(1) It is entirely mediated by the dipole l� ¼ 1;
(2) Depending on the value of α, it may fall inside the

ionization regime (Pion ≳ PGW) despite not being a
Bohr resonance.

As a consequence, its Landau-Zener parameter Z does not
scale as a pure power law in α (nor Mc), and must be
computed numerically. The explicit result is reported in
Appendix D. Similar to hyperfine resonances, we can
compute angular intervals δ2 and χ2 where the resonance
is nonadiabatic and Γ-breaks, respectively. The extremely
large decay width of j200i (as all states with l ¼ 0),
however, makes χ2 as large as to correspond with the whole
possible range of inclinations, from 0° to 180°. Fine
resonances are thus effectively never excited for a cloud
in a j211i state.
Finally, if the binary arrives to the Bohr region with the

cloud still intact, then it encounters the Bohr resonances, all
of which are of the sinking type and fall inside the
ionization regime (with the exception of j211i → j100i).
No extra circularization is provided by the hyperfine
resonances, if they do not significantly destroy the cloud.
Nevertheless, by the time the binary arrives to the Bohr
regime, not only has it presumably evolved for a long time
under the circularizing effect of GW radiation, but it
also starts to ionize the cloud, further suppressing the
eccentricity [36]. We will therefore assume that

quasicircular orbits are a good approximation by this point.
The final population after each sinking resonance can be
found using the approximation (3.46), which together with
the scaling relations (4.10) and (4.12), implies

jcbj2 ≈ 3.7

�
Z
B2

�
1=3

∝
M
Mc

q4=3: ð5:10Þ

For the benchmark parameters, the values of jcbj2 for the
strongest sinking resonances (which are typically with
states of the form jn00i) are summarized in Fig. 12, where
we have assumed for simplicity a perfectly counterrotating
configuration (β ¼ π). This is generally a good approxi-
mation, due to the relative smallness of the angle χ1. We see
that all resonances are very nonadiabatic, in total trans-
ferring less than 1% of the cloud to other states. Hence,
ionization of j211i happens with minimal disturbance from
Bohr resonances.
The only floating Bohr resonance is j211i → j100i. It is

worth noting that this is also the only Bohr resonance
falling outside the ionization regime (see Fig. 9) and that
recent numerical studies [37] have shown that it has a
resonance width much larger than all other resonances. This
last observation means that the resonance might partially
evade the analysis of the present paper, due to the nonlinear
dependence of PGW on R� playing an important role. In any
case, we expect the extremely large decay width of j100i to
Γ-break the resonance in most or all realistic cases,
preventing the float from happening.

C. Evolution from a j322i initial state
The second-fastest growing mode is j322i. In this case,

the constraint on α—imposing that the superradiance
timescale is shorter than a Gyr—is

FIG. 11. Mass of the cloud Mc
br at resonance Γ-breaking, as a function of α and β, for the two hyperfine resonances from the initial

state j211i. The mass of the cloud decreases during the resonance from its initial value Mc, and the resonance breaks when the value
Mc

br is reached. Values Mc
br > Mc indicate that the resonance breaks immediately as it starts. The contours [blue] are calculated on

circular orbits, as this gives a good approximation for the strongest constraint onMc
br even when overtones, due to orbital eccentricity,

(i.e., higher values of jgj for the resonance between two given states) are taken into account. Due to the inaccuracy of the analytical
approximations for the decay width ðω211ÞI, especially at large α, we have determined the contours with Leaver’s [56–59] and
Chebyshev [49] methods. The dashed lines [red] are analytical approximations to the blue contours in the proximity
of β ¼ π, based on (5.7).
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0.09
�

M
104M⊙

�
1=13 ≲ α < 1; ð5:11Þ

while the rate of cloud decay in GWs is proportional
to Mcα

18.
Compared to Sec. V B, a larger number of hyperfine

resonances are possible, with any state of the form j32mbi,
with −2 ≤ mb ≤ 1. All of these can happen with g ¼ −4, in
which case the hexadecapole l� ¼ 4 is entirely responsible
for the mixing of the states. However, the casesmb ¼ 0 and
mb ¼ 1 can also resonate, at different separations, with
g ¼ −2: these are dominated by the quadrupole l� ¼ 2
instead, which makes these resonances much stronger than
the others. Their positions are

j322i ⟶g¼−2 j321i R0

M
¼ 5.4 × 104

�
α

0.2

�
−4
�

ã
0.5

�
−2=3

;

ð5:12Þ

j322i ⟶g¼−2 j320i R0

M
¼ 3.4 × 104

�
α

0.2

�
−4
�

ã
0.5

�
−2=3

;

ð5:13Þ

which should be evaluated at ã ≈ 2α=ð1þ α2Þ. The most
stringent constraint on δ1 is given by j322i → j321i and
equals

δ1 ¼ 5.4°
�
Mc=M
10−2

�
−1=6

�
q

10−3

�
1=12

�
α

0.2

�
4=3

�
ã
0.5

�
1=36

× fðε0Þ1=4: ð5:14Þ

The angle χ1, within which the same resonance Γ-breaks, is
instead

χ1 ≈ 4.8°

�
Mc

br=M
10−2

�
−1=6

�
α

0.2

�
11=6

�
ã
0.5

�
−5=18

; ð5:15Þ

also more accurately numerically computed and shown in
Fig. 13 (left panel). Similar to the resonant history of j211i,
some resonances (such as j322i → j321i) become weak
around β ¼ 0, yet other resonances (such as j322i→ j320i)
do not, thereby eliminating any possible “safe interval”
around a corotating configuration.
Differently from Sec. V B, there is no clear hierarchy

between δ1 and χ1. Which one is largest depends not only
on α, but also on the chosen value of Mc

br. The angular
interval that leads to the survival of the cloud in appreciable
amounts is, however, generally dominated by the Γ-break-
ing, as even very light clouds, sayMc

br=M < 10−4, are able
to give clear signatures in the Bohr region [34].
As in the j211i case, the ε-breaking and Z-breaking

prove to not be relevant for the resonant history: the value

FIG. 12. Strongest sinking Bohr resonances on a counterrotating orbit for a cloud in the j211i or j322i state. The percentages next to
each resonance are the values of jcbj2 for benchmark parameters, and they scale with Mc and q according to (5.10), while the red
numbers below are the resonant orbital separations R0, in units of M.

FIG. 13. Same as Fig. 11 for the strongest hyperfine (left panel) and fine (right panel) resonances from a j322i state. The analytical
approximations of the contours are not shown in the latter case, as they quickly become inaccurate for moderate values of α.
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ffiffiffiffi
Z

p
B ∼ 107

�
Mc=M
10−2

��
q

10−3

�
−1
�

α

0.2

�
−6
�

ã
0.5

�
−1=3

ð5:16Þ

requires extremely high eccentricities (ε≳ 0.98) to give rise
to a resonance breaking. The corresponding initial incli-
nations are extremely close to β ¼ π and would fall in the
interval (5.14), where the resonance is not adiabatic.
A cloud in the j322i state can experience fine resonances

with states with l ≠ 0. Their decay width is smaller than
those of the states with l ¼ 0: as a consequence, fine
resonances can destroy a significant portion of the cloud
before they Γ-break. The fine resonance that gives the most
stringent constraints on δ2 and χ2 is

j322i ⟶g¼−1 j311iR0

M
¼ 2.3 × 103

�
α

0.2

�
−10=3

: ð5:17Þ

Analytical approximations for β ≈ π give8

δ2 ¼ 3.2°

�
Mc=M
10−2

�
−1=4

�
q

10−3

�
1=8

�
α

0.2

�
31=24

ð5:18Þ

and

χ2 ≈ 9°

�
Mc

br=M
10−2

�
−1=4

�
α

0.2

�
3=2

; ð5:19Þ

while a more accurate numerical determination of the mass
of the cloud at resonance breaking is given in Fig. 13 (right
panel). It is worth noting that the strength of the j322i →
j311i resonance has a complicated β dependence, due to
the octupole l� ¼ 3 ≠ −g being the dominant term.
Consequently, this resonance becomes weak not only
around β ¼ 180°, but also around β ¼ 41° and 95° (as
visible from Fig. 13). However, other fine resonances
remain strong at these intermediate inclinations and so,
once again, the cloud can only reach the Bohr region if the
inclination is in a narrow interval around the counter-
rotating configuration.
In the Bohr region, the system encounters several sinking

resonances, the strongest of which are with states of the
form jn11i. The final populations jcbj2 are displayed in
Fig. 12. For benchmark parameters, about 2% of the cloud
is lost in the process. None of the floating resonances, with
n ¼ 1 or n ¼ 2 states, becomes adiabatic within the interval
of inclinations discussed above.

Finally, in case the binary is formed at radii small enough
to avoid constraints on the inclination coming from fine
resonances, an interesting scenario opens up. The strongest

floating Bohr resonance is j322i⟶g¼−1 j211i, which becomes
adiabatic, for benchmark parameters, for β < 155°.9 Among
all possible scenarios we considered in Secs. V B and V C,
this is the only case where the binary’s evolution in the Bohr
region features a new phenomenon, beyond ionization and
nonadiabatic sinking resonances: namely, an adiabatic float-
ing resonance. The companion’s motion continues to ionize
the cloud while this resonance takes place, potentially
changing Mc significantly before its end. This is also the
only floating resonance with the actual potential to partially
move the cloud to a different state, rather than merely
destroying it: as can be seen in Fig. 10 (right panel), the
hierarchy Δtfloat ≫ tdecay is not valid in the entire parameter
space. Hence, depending on the parameters, when the
resonance ends, the inspiral can either continue without
the cloud, or with a cloud in a (decaying) j211i state and a
reduced value of Mc. In the latter case, the discussion in
Sec. V B applies from this point onwards.

VI. OBSERVATIONAL SIGNATURES

The dynamics of the cloud-binary system are intricate
and depend on the parameters. In Sec. V we determined
when the cloud is entirely destroyed in the early inspiral,
when it loses some of its mass upon resonance breaking,
and when it remains intact until the binary enters the Bohr
region. There are thus two main ways the cloud can leave
an imprint on the GW waveform: (1) modifications of the
waveform due to interaction with the cloud, in case it is still
present in the late stages of the inspiral (Sec. VI A) and
(2) permanent consequences on the binary parameters left
by a cloud destroyed early in the inspiral (Sec. VI B). A
partially destroyed cloud, left by a broken resonance, may
be able to combine both kinds of signatures.

A. Direct signatures of the cloud

As discussed extensively in Sec. V, the requirement that
the cloud survives the hyperfine and fine resonances forces
either the inclination angle to be within Oð10°Þ of a
counterrotating configuration or the binary to form at radii
too small to ever excite those resonances. Then, most
phenomena producing direct observational evidence of the
cloud happen when the binary reaches the Bohr region.
Here, ionization takes over GW radiation as the primary
mechanism of orbital energy loss. When Pion ≫ PGW, the

8For α≳ 0.5, this resonance may marginally fall inside the
ionization regime. However, the value of Pion never becomes
much larger than PGW. We therefore ignore this detail, which
only slightly increases the value of δ2 compared to the one
presented in (5.18).

9Due to the weakness of the resonance compared to most, the
(hyper)fine ones, it is not possible to expand around β ¼ π and
get a simple formula for the upper limit on the angle as function
of the parameters. Nevertheless, a good approximation is given
by the following cubic equation: ðπ − βÞ4 þ 2.8ðπ − βÞ6 >
0.056 × ð105Mcq=MÞ1=2.
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evolution of the GW frequency fGW approximately follows
a universal shape [35],

fGWðtÞ ¼
α3

M
f

�
Mcqα3

M2
t

�
; ð6:1Þ

where the function f can be explicitly determined from the
shape of Pion. This universal behavior of fGWðtÞ constitutes
a direct evidence of the presence of the cloud.
On top of this, sinking resonances can cause non-

negligible upward “jumps” of fGW due to their back-
reaction,10 even if they are strongly nonadiabatic. For a
Bohr resonance jnalamai → jnblbmbi, they are located at

fresGW ¼ 26 mHz
g

�
104M⊙

M

��
α

0.2

�
3
�
1

n2a
−

1

n2b

�
; ð6:2Þ

where g ¼ mb −ma, and thus fall inside the LISA band for
benchmark parameters.11

The amplitude of the jump can be computed explicitly
from (3.20) (assuming quasicircular orbits):

ΔfGW ¼ 0.61 mHz

Δm1=3

�
104M⊙

M

��
Mc=M
0.01

��
q

10−3

�
−1

×

�
α

0.2

�
3
�
1

n2a
−

1

n2b

�
4=3

�jcbj2
10−3

�
; ð6:3Þ

where the values of jcbj2 and their dependence on the
parameters are given in Fig. 12 and Eq. (5.10). The increase
in frequency comes with smaller long-lived oscillations of
the frequency, and with a slight increase of the eccentricity;
both these effects have been shown in the right panels of
Fig. 4 for example parameters. The dephasing introduced
by a single sinking resonance on top of the one coming
from ionization is ΔΦGW ≈ πfresGWΔfGW=γ. This is of the
order of thousands of radiants, although the exact number
can vary by a few orders of magnitude in different regions
of the parameter space. Not only is this well above the
expected LISA precision of ΔΦGW ∼ 2π, but such a
dephasing would happen in a very narrow frequency range,
in contrast to most other environmental effects, including
ionization. This unique behavior would aid parameter
estimation by directly linking the cloud’s parameters with
ΔΦGW via (6.2) and (6.3), especially if multiple jumps are
observed within one signal.
As discussed in Secs. V B and V C, the only cases where

a floating resonance can be observed in the Bohr region

require a binary formation at very small radii, so that all
early resonances are skipped without a strict requirement
on the inclination angle. Resonances of the type
jnalamai → j100i happen very late in the inspiral (see
Fig. 9), where relativistic corrections are expected to be
more important [37]. The only other floating Bohr reso-
nance encountered in Sec. V is j322i → j211i. This is an
interesting case because it may not entirely destroy the
cloud. The expected GW signal is a constant frequency
fGW given by Eq. (6.2), for a total floating time of12

Δtfloat ¼ 5.8 yrs

�
M

104M⊙

��
q

10−3

�
−2
�

α

0.2

�
−3
: ð6:4Þ

Although the cloud’s mass is continuously reduced by
ionization while the resonance takes place, the value given
in (6.4) remains independent of Mc as long as it is large
enough to guarantee Pion ≫ PGW.

B. Indirect signatures: Impact on binary parameters

For sufficiently small orbital inclinations, as seen in
Figs. 1, 11, and 13, the cloud can be destroyed during one
of the floating resonances in the early inspiral to a level
where it no longer affects the binary dynamics in an
observable way. Then, by the time the system enters in
band, its evolution is expected to follow the rules of
vacuum general relativity. Nevertheless, the binary still
carries the marks of the previously existing boson cloud
and of the resonance that destroyed it. These are due to the
backreaction on the orbit from that floating resonance and
come in the form of a change in the eccentricity and tilt of
the inclination angle.
While in Sec. V we could simplify the analysis by

studying only the strongest resonance; the impact on the
orbital parameters strongly depends on which overtone
(that is, which value of g) mediated the last adiabatic
resonance encountered by the system.13 As shown in Fig. 6,
the orbital parameters follow specific sets of trajectories on
the ðε; βÞ plane, until the resonance breaks or completes.
While floating orbits always tilt the inclination angle
towards a corotating configuration, the eccentricity is
forced towards a fixed point, whose value depends on
Δm=g. Some examples of the value of this fixed point are
shown in Fig. 14 for different values of Δm=g.
Assuming that the resonance does not break prematurely,

the distance traveled by the binary in the ðε; βÞ plane
depends on the parameter D alone, introduced in (3.32).

10In our work, we only study the backreaction on the orbital
parameters. When including the backreaction on the geometry as
well, the cloud’s transitions could cause “resonant” features in the
emitted GWs, see, e.g., Fig. 1 of [38].

11Formula (6.2), with nb → ∞, also describes the position of
the gth “kink” of the function f appearing in (6.1), corresponding
to the gth discontinuity of Pion (see Fig. 9).

12This value assumes a quasicircular corotating orbit. Moder-
ate nonzero values of eccentricity or inclination introduce Oð1Þ
variations in Δtfloat.13If the system undergoes multiple floats, for example, because
broken resonances leave a cloud massive enough to excite other
adiabatic resonances, then the evolution of the eccentricity follows
several nontrivial steps.Here, however,we focus on the last of those
as it has the most direct observational consequences.
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Very roughly, the system gets eD times closer to the
eccentricity fixed point than it was before the resonance
started. For our benchmark parameters, we find that most
hyperfine and fine resonances have values of D between 1
and 10, meaning that the fixed point is approached
significantly. The value of D, however, strongly varies
with the parameters, as we found in Sec. IV. In particular, it
is inversely proportional to q, implying that only inter-
mediate or extreme mass ratio binaries change significantly
their orbital parameters during a floating resonance.
Examples of variations of the parameters during a floating
orbit are reported in Fig. 15 for the resonances j211i →
j21 − 1i and j322i → j320i.
The eccentricity attractor points shown in Figs. 14 and

15 are a unique signature of the cloud-binary dynamics.
Together with the suppression of the orbital inclination, this
opens up the possibility of performing a statistical test of
the parameters of a large number of binary inspirals and
comparing them with the ones predicted from a suitable
model of their formation channels. This task is likely to be
complicated by the existence of other astrophysical mech-
anisms or formation processes that can affect eccentricity
and inclination, but diving into these details is beyond the
scope of the present work. It should also be kept in mind

that, after the completion of the resonance, GW emission
will start circularizing the orbit once again, so that a
“backtracking” of the eccentricity would be needed to test
the existence of the eccentricity attractor points. For an in-
depth analysis of the signatures of boson clouds on binary
eccentricity and inclination, see the companion Letter [45].
In addition, Ref. [66] (which was completed at the same
time as the present work) also explores the binary eccen-
tricity in this context.
Lastly, we note that the extremely long floating time

associated with some hyperfine or fine resonances can stop
many binaries from getting in band at all, consequently
reducing the merger rate. For example, for our choice of
benchmark parameters, the hyperfine resonances from the
j322i state, shown in Fig. 15, float for longer than the
Hubble time.

VII. CONCLUSIONS

In the context of gravitational-wave astronomy, binary
black hole environments have long been proposed as a
laboratory for fundamental physics. One such example are
gravitational atoms, or clouds of ultralight bosons produced
by superradiance around spinning black holes. Compared

FIG. 14. Example values of the fixed point ε̄ depending on Δm=g. Numbers can be found by solving Eqs. (3.21) and (3.22) on a
floating orbit.

FIG. 15. Examples of backreaction on the eccentricity ε and inclination β during floating orbits that destroy the cloud entirely. We
show the strongest resonance (Δm=g ¼ 1) and two overtones in each scenario, using the benchmark parameters α ¼ 0.2, q ¼ 10−3,
Mc ¼ 0.01M, and M ¼ 104M⊙. Each case is initialized with ε0 ¼ 0.5 and β0 ¼ 90° for illustrative purposes, but we observed that the
final values of ε and β are very robust against the choice of different initial conditions. The final values of ε and β, as well as Δtfloat, are
computed integrating numerically Eqs. (3.7), (3.20), (3.21), and (3.22). For benchmark parameters, the floating time of resonances from
j322i exceeds the Hubble time; however, it strongly depends on the parameters, as derived in (4.1).
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to other kinds of environment, the phenomenology of
gravitational atoms is extremely rich. The two most
striking types of interaction between the binary and the
cloud are resonant phenomena [30,31,33] and friction
effects [32,34–36], both of which leave very distinct signa-
tures on the emitted gravitational waveform. This complexity
is a blessing for the potential detection and identification [10]
of such systems. However, it is a curse for the achievement of
a complete characterization of their evolution.
Previous studies have described the effects on the wave-

form as function of the state of the cloud and of the binary
configuration at the time of observation. These are, however,
the final products of a complex series of cloud-binary
interactions that characterize former phases of the inspiral.
Despite a number of relevant studies [30,39–43,67,68], the
combinations of cloud states and binary configurations
compatible with this kind of evolution have not yet been
determined.
In this work, we finalize such a program by systemati-

cally studying the chronological sequence of resonances
encountered during the binary inspiral. We do so in the
most general possible set of assumptions: we allow for any
value of the initial eccentricity, inclination, and separation
of the binary; at the same time, we keep the scaling with the
cloud’s parameters explicit, so to apply our results to the
entire parameter space. Furthermore, we take into account
the backreaction of the resonances on the orbit and study
how this impacts the behavior of the resonances them-
selves. This aspect, as well as the impact of inclination and
eccentricity on resonances (and vice versa), have never
been studied before, and each of these novel results turns
out to play a crucial role in our analysis. Finally, we
perform explicitly the exercise of “following” the evolution
of the system from the initial states most likely to be
populated by superradiance, j211i and j322i, until the
merger, and then summarize the gravitational wave sig-
natures compatible with the scenarios studied.
In principle, one might have expected the evolution of

the system to be extremely complicated. The S-matrix
approach developed in [33] suggests a tree of populated
states branching more and more, every time a new
resonance is encountered. In practice, however, we find
that the hierarchy between the floating and decay time-
scales simplifies the picture dramatically.14 During every
hyperfine or fine adiabatic resonance, the cloud loses mass
until the resonance breaks, often to the point where it is no
longer directly observable. The conclusion is then remark-
ably simple, and similar among the two cases studied
explicitly. Only binaries close enough to a counterrotating
configuration, where these early resonances are very weak,
are able to carry the cloud up to the point where it becomes

observable through the effects of ionization and a large
number of weak resonances. Our detailed study of the
nonlinear behavior of resonances allows us to precisely
quantify the angular interval of inclinations where this
scenario is realized, see Eqs. (5.7), (5.15), and (5.19), as
well as Figs. 11 and 13.
The early disappearance of the cloud for generic orbital

configurations may seem to suggest that the chances of
detecting ultralight bosons using binary systems might be
slim after all. It is certainly true that our work puts strict
conditions for the direct observation of the cloud-binary
interaction. To avoid all early resonances, either the initial
separation must be small enough, or the orbital angular
momentum must be approximately antialigned (within a
tolerance interval whose size depends on the parameters)
with the central BH’s spin. The likelihood of either scenario
depends on the astrophysical processes governing the
formation of the binary system and is subject to large
uncertainties though—see Refs. [61,65,69–72] for the two
cases, respectively. We note, however, that the event
leading to the cloud destruction—an adiabatic floating
resonance—necessarily exerts a strong backreaction on
the binary’s inclination and eccentricity, generally reducing
both quantities significantly. This fact raises the possibility
to reverse engineer the existence of a cloud from a
statistical analysis of a large number of inspirals with
well-measured orbital parameters.
As anticipated in [36], the present work answers the

main remaining open questions left on the phenomenology
of gravitational atoms in binaries, within a certain set of
assumptions. We neglected a number of subleading effects.
Some of them, like the accretion onto the secondary [34]
and the cloud’s self gravity [73,74] can be straightfor-
wardly included in the binary’s evolution and do not change
qualitatively the picture drawn here. Others, like the
backreaction of the cloud’s decay in GWs [75], the
nonresonant overlap between growing and decaying
states [67,68], and the change in the BH’s mass and spin
due to the absorption of the cloud during a resonance (see
footnote 6) can potentially introduce new relevant features,
at large, small, and any separations, respectively. But
perhaps most importantly, we stuck to a nonrelativistic
analysis; steps forward towards a fully relativistic descrip-
tion have recently been taken in [37,76]. Future directions
of studies in this field will likely focus on one or more of
the above points.
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APPENDIX A: HYPERFINE RESONANCES
AND ANGULAR MOMENTUM

A nonzero black hole spin is responsible for the
existence of the hyperfine energy splitting, as it breaks
the spherical symmetry of the background spacetime. At
the same time, we study the backreaction of resonances
(hyperfine or not) on the orbit in the Newtonian approxi-
mation, assuming the conservation of the total angular
momentum, which leads to Eqs. (3.20), (3.21), and (3.22).
This methodology might appear as fundamentally incon-
sistent, so let us inspect it more closely.
The weak-field approximation of the Kerr metric, which

is valid at large distances, reads

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1þ 2M

r

�
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ − ãM
4M
r

sin2θdtdϕ: ðA1Þ

The last term is known to give rise to the Lense-Thirring
precession, as the equation of motion of a scalar particle
can be put in the form

d2r
dt2

¼ −
M
r3

rþ 4
dr
dt

×B; ðA2Þ

where the gravitomagnetic field B is related to the black
hole spin as

B ¼ ∇ ×A; A ¼ −
J × r
2r3

; J ¼ ãM2ẑ: ðA3Þ

The corresponding Hamiltonian is

H ¼ ðp − 4μAÞ2
2μ

−
μM
r

≈
p2

2μ
−
α

r
þ 2ãM2

r3
Lz; ðA4Þ

where μ ¼ α=M is the mass of the particle. We can
immediately check that the last term in (A4) gives rise
to the expected hyperfine splitting,

hnlmjHjnlmi ¼ 2ãM2m

	
nlm

���� 1r3
����nlm




¼ 2ãM2m
ðμαÞ3

n3lðlþ 1=2Þðlþ 1Þ ; ðA5Þ

which perfectly matches the last term in (2.3).

The orbital angular momentum L ¼ r × p evolves as

dL
dt

¼ i½H;L� ¼ 2

r3
J ×L; ðA6Þ

which is the expected Lense-Thirring precession. Applying
this equation to the cloud-binary system gives rise to two
additional terms on the right-hand sides of (3.16) and (3.17),
corresponding to the Lense-Thirring precession of the cloud
(which vanishes, in most cases, as SckJ even during a
transition, as we will see below) and of the binary. This
precession is, however, parametrically small. None of the
other terms in (3.16) and (3.17) depend on the BH spin ã,
even in the case of hyperfine resonances, where the energy
splitting is proportional to ã. Not only for realistic parameters
is this precession extremely slow, but it also does not disrupt
the approach in the main text, as (3.17) can be simply
replaced by the analogous equation for the (precessing)
equatorial projection of the angular momentum.
Having justified the use of the conservation of total

angular momentum, there is another potentially worrying
aspect of the breaking of spherical symmetry, that has to do
with the spin of the cloud when it is in a mixed state, for
example, during a transition. As long as the Hamiltonian is
spherically symmetric, jnlmi are guaranteed to be eigen-
states of the scalar field’s orbital angular momentum L.
Its matrix elements are given by Lzjnlmi ¼ mjnlmi
and, in the Condon-Shortley convention, L�jnlmi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ−mðm� 1Þp jnl;m� 1i, where L� ¼Lx� iLy.

If the cloud is in a mixed state of the form jψi ¼
cajnalamai þ cbjnblbmbi, then its z component of the
angular momentum is majcaj2 þmbjcbj2, while the equa-
torial components vanish unless la ¼ lb and jma−mbj¼1.
Remarkably, all the previous results still hold for the

Hamiltonian (A4). That is because the perturbation ∼Lz=r3

is diagonal on the basis jlmi, only mixing states with
different n. Even though the spacetime is not spherically
symmetric, the angular structure of the eigenstates is
unchanged. The equations in the main text then do not
need any modification, except for the case of hyperfine
transitions with jΔmj ¼ 1. For a hyperfine transition with
mb ¼ ma − 1, careful computation (in the Schrödinger, not
dressed, frame) of the equatorial components of Sc shows
that Eq. (3.17) would need to be corrected with a term

dSc;x
dτ

∼
B
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ −maðma − 1Þ

p ffiffiffiffi
Z

p
ðjcbj2 − jcaj2Þ

× sinðCτ=3Þ: ðA7Þ

This is a fast oscillating term that averages to zero on
timescales much shorter than the evolution of the orbital
parameters and the duration of the resonance. We thus
ignore it in the main text.
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APPENDIX B: GENERAL
RESONANCE BREAKING

The phenomenon of resonance breaking was discussed
in Sec. III D 3 in the simplified scenarios where only one of
the following quantities is allowed to vary at a time: the
eccentricity ε, Landau-Zener parameter Z, and cloud’s mass
Mc. We derive here the result in the general case. Taking the
time derivative of (3.42), we find

d2ω
dτ2

¼ dfðεÞ
dτ

þ B
d2jcaj2
dτ2

¼ dfðεÞ
dτ

þ B

�
d2c�a
dτ2

ca þ 2
dc�a
dτ

dca
dτ

þ c�a
d2ca
dτ2

�

¼ dfðεÞ
dτ

−
fðεÞ
2Z

dZ
dτ

þ Γ − 2ZBðjcaj2 − jcbj2Þ

þ
�

1

2Z
dZ
dτ

− Γ
�
dω
dτ

þ ω
ffiffiffiffi
Z

p
Bðc�acb þ cac�bÞ; ðB1Þ

where the second line is obtained by repeated use of the
Schrödinger equation (3.33) together with (3.42). Under
the assumption that all coefficients appearing above evolve
slowly during a floating orbit, Eq. (B1) has the structure of
a damped harmonic oscillator, with solution

ω ¼
dfðεÞ
dτ − fðεÞ

2Z
dZ
dτ þ Γ − 2ZBðjcaj2 − jcbj2Þ
−ðc�acb þ cac�bÞ

þ damped oscillatory terms: ðB2Þ
The resonance breaks whenever c�bca þ c�acb ¼ 0. By
direct application of the Schrödinger equation, we find

ffiffiffiffi
Z

p d
dτ

ðc�acb þ cac�bÞ ¼ −ω
djcaj2
dτ

− Γ
ffiffiffiffi
Z

p
ðc�acb þ c�bcaÞ:

ðB3Þ

By plugging in (B3) the nonoscillatory term of (B2), we
arrive at an equation for the sole unknown c�acb þ c�bca:

ZB
2

�
d
dτ

þ 2Γ
�
ðc�acb þ c�bcaÞ2

¼
�
dfðεÞ
dτ

−
fðεÞ
2Z

dZ
dτ

þ Γ − 2ZBðjcaj2 − jcbj2Þ
�
djcaj2
dτ

:

ðB4Þ

Remarkably, the evolution of the eccentricity, the variation
of the Landau-Zener parameter, and the decay of the cloud
contribute additively to (B4), each with its own term. In
realistic cases, Γ is large enough to force the population of
state jbi to reach a saturation value jcbj2 ¼ fðεÞ=ð2ΓBÞ,
which is usually small enough to be neglected in (B4). The
point of resonance breaking, then, only involves the
population left in the initial state, jcaj2.

APPENDIX C: IONIZATION AT RESONANCE

The expressions for the ionization rate and power derived
in [34] are valid under the assumption that the frequency Ω
of the perturbation is away from any bound-to-bound state
resonance. In this appendix, we relax this assumption by
computing the new term contributing at resonance and
showing that its effect is ultimately negligible. To allow for
an easy match with the notations of [34], here we denote the
state initially populated by jbi and any other bound state
by jai.
Ignoring couplings between different continuum states

(as justified in Appendix A2 of [34]), the Hamiltonian of
the gravitational atom reads,

H ¼
X
b

ϵbjbihbj þ
X
a≠b

ηabðtÞjaihbj þ
X
K

ϵKjKihKj

þ
X
K;b

½ηKbðtÞjKihbj þ H:c:�; ðC1Þ

where jKi≡ jk;lmi is a continuum state multi-index,
ϵK ≈ k2=ð2μÞ, and the couplings ηabðtÞ and ηKbðtÞ are
the matrix elements of the perturbation (2.4). As in [34], by
integrating out the continuum the Schrödinger equation can
be recast in the following form15:

i
dcb
dt

¼ EbcbðtÞþ
X
a≠b

½ηbaðtÞeiðϵb−ϵaÞtþEbaðtÞ�caðtÞ; ðC2Þ

where we define the induced couplings,

EbaðtÞ≡ −i
Z

t

−∞
dt0

X
K

η�KbðtÞηKaðt0Þe−iðϵK−ϵbÞtþiðϵK−ϵaÞt0 ;

ðC3Þ
and the induced energies Eb ≡ Ebb. The first term in (C2)
controls the ionization of state jbi, while the first term in the
parenthesis is responsible for the jbi → jai resonance. The
last term, which is the focus of this appendix, is a coupling
between jbi and jai induced via the interaction with the
continuum. Because EbaðtÞ oscillates very rapidly unless
ðmb −maÞφ̇� ¼ ϵb − ϵa, the parenthesis in (C2) can be
neglected altogether whenever the system is not actively on
resonance.
Let us study what happens when this is the case instead.

The same saddle-point approximation done in [34] can be
applied to the case a ≠ b, arriving to

EbaðtÞ ¼ eiðϵb−ϵaÞt−iðmb−maÞφ�ðtÞ

×
X
l;m

�
−
iμη�ðgbÞKb ηðgaÞKa

2kðgaÞ�
ΘððkðgaÞ� Þ2Þ

�
: ðC4Þ

15All quantities here depend on time, either through fast
oscillatory terms, due to the evolving phase φ�, or through the
slow frequency chirp. For ease of notation, we will only explicitly
write the time dependence of terms falling in the first class.
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Here, we defined ga ¼ m −ma, evaluated jKi at kðgaÞ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μððm −maÞφ̇� þ εaÞ

p
, and expanded the bound-

continuum coupling in its Floquet components, ηKa ¼
ηðgaÞKa e

iðm−maÞt (and similarly for a ↔ b). To understand
the effect of the induced coupling Eba, we can temporarily
set ηba ¼ 0 and write (C2) as

djcbj2
dt

¼
X
a

X
l;m

μ

kðgaÞ�
ΘððkðgaÞ� Þ2Þ

× Re½eiðϵb−ϵaÞt−iðmb−maÞφ�ðtÞη�ðgbÞKb ηðgaÞKa c
�
bðtÞcaðtÞ�:

ðC5Þ
Here, the term with a ¼ b reproduces the ionization term
EbcbðtÞ in (C2). Moreover, the evolution of state jai is
determined by the same formula, swapping b ↔ a. For
a ≠ b, however, this operation transforms the term inbrackets
into its complex conjugate, so its real part stays unchanged.
We thus see that the induced coupling Eba does not contribute
to a jbi → jai transition alongside ηba, as one might have
expected from (C2) and as was speculated in [34]. Instead,
both jcbj2 and jcaj2 experience an identical depletion (in
addition to ionization) or recombination, depending on the
sign of the real part appearing in (C5); both cases are possible.
We have validated the previous results by comparing them

to an explicit numerical integration of the Schrödinger
equation, with the continuum states modeled as a large set
of discrete states, quadratically spaced in energy. By tuning
the parameters to make the impact of the induced coupling
clearly visible, we found that (C5) gives, indeed, a very
accurate description of the evolution of the populations
around the resonance. In the main text, in particular, for
Bohr resonances, we are mainly concerned with the correc-
tion from the induced coupling to a naive approachwhere the
contributions of ionization and the resonance are simply
summed up. To determine its importance, we assume for
simplicity that ηab ¼ 0, jcbj2 ¼ 1 and jcaj2 ¼ 0 at t ¼ −∞
and employ a (further) saddle-point approximation in (C2)
around the time t0 such that φ̇� ¼ Ω0 ¼ ðϵb − ϵaÞ=
ðmb −maÞ. The population at t ¼ þ∞ is then

jcaj2 ¼
2π

jmb −majγ
����
X
l;m

μη�ðgbÞKb ηðgaÞKa

2kðgbÞ�
ΘððkðgbÞ� Þ2Þ

����
2

; ðC6Þ

where the couplings and kðgbÞ� have to be evaluated at
Ω ¼ Ω0. Similar to an argument already developed
in [34], this quantity jcaj2 isOðq3α4Þ, and it has to compete
with the η2=γ ∼Oðqα2Þ contributions due to direct coupling
jηbaj2=γ. Once again, we havevalidated (C6) by comparing it
to a direct numerical integration of the Schrödinger equation
and evaluated it for a typical Bohr resonance, finding a final
population ofOð10−11Þ. We conclude that simply adding the

steady deoccupation introduced by ionization on top of the
resonant transition studied in the main text is a good
approximation for our purposes.

APPENDIX D: j211i → j200i RESONANCE

The strength of the fine resonance j211i → j200i has
anomalous scaling with parameters, due to the dipole
l� ¼ 1 being entirely responsible for the coupling and
the binary separation falling partially inside the region
where ionization dominates over GW emission. We there-
fore determine the angle δ2, such that for π − δ2 < β ≤ π
the resonance is nonadiabatic, as

δ2 ¼ 6.7°

�
Mc=M
10−2

�
−1=4

�
q

10−3

�
1=8

�
α

0.2

�
7=8

× Fðα;McÞ; ðD1Þ
where the formula holds for small δ2, and the function
Fðα;McÞ is calculated numerically and shown in Fig. 16.

APPENDIX E: SUMMARY OF KEY
RESONANCE VARIABLES

Symbol Meaning Reference

ε Binary eccentricity
β Binary inclination
g Overtone number (3.1)
γ Frequency chirp rate induced by

GWs/ionization
(3.6)

τ Dimensionless time (3.8)
ω Dimensionless frequency (3.8)
Z Landau-Zener parameter (3.8)
B Backreaction of a resonance (3.23)
C Inertia of ε and β with respect to

resonance backreaction
(3.23)

D Distance parameter, D ¼ B=C (3.32)
Γ Dimensionless decay width of the

final state
(3.33)

FIG. 16. Function Fðα;McÞ appearing in Eq. (D1), which
defines the angular interval δ2 around a counterrotating orbit
where the resonance j211i → j200i is not adiabatic.
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