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Engineering single-atom angular momentum eigenstates in an optical tweezer
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We engineer angular momentum eigenstates of a single atom by using an all-optical approach based on the
interference of Laguerre-Gaussian beams. We confirm the imprint of angular momentum by measuring the two-
dimensional density distribution and by performing Ramsey spectroscopy in a slightly anisotropic trap, which
additionally reveals the sense of rotation. This article provides the experimental details on the quantum state
control of angular momentum eigenstates reported in P. Lunt et al., Phys. Rev. Lett. 133, 253401 (2024).
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I. INTRODUCTION

Quantum state engineering at the level of individual
constituents forms a cornerstone of modern quantum tech-
nologies, ranging from quantum metrology [1,2] to quantum
simulation [3] and computation [4]. It has enabled break-
throughs in cooling the motional degree of freedom of
nanoparticles [5], ions [6], neutral atoms [7–10], and even
molecules [11,12]. These platforms are particularly versatile
as they offer precise geometric shaping of arbitrary optical
trapping potentials [13–16], thereby facilitating detailed con-
trol over the quantum state.

The manipulation of quantum systems makes use of energy
and momentum transfer when light interacts with matter. Spe-
cific light fields such as Laguerre-Gaussian (LG) beams carry
well-defined quanta of orbital angular momentum l h̄ [17]
(in addition to their intrinsic angular momentum determined
by their polarization) and can induce a mechanical rotation
in matter [18]. The transfer of orbital angular momentum
from an LG beam to a macroscopic nanoparticle demonstrated
the ability of light fields to exert torque [19]. Furthermore,
the transfer of orbital angular momentum to a macroscopic
quantum state forming a Bose-Einstein condensate showed
the quantization of the angular momentum transfer [20]. How-
ever, the angular momentum control of a single neutral atom
has remained elusive.

In this article we present an all-optical approach for inject-
ing orbital angular momentum to a single atom by rotating an
anisotropy of an optical tweezer. The precise control of the
shape of the light field and its rotational speed, together with
the small anharmonicity of the potential, enables us to selec-
tively address motional states that differ in angular momentum
and energy. In Fig. 1 we illustrate this process and show
the in-plane tweezer potential, which approximately forms a
two-dimensional (2D) harmonic potential with trap frequency
ω. This work introduces a tool for quantum state engineering
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and lays the groundwork for studies on interacting many-body
systems in rapidly rotating optical traps [21].

II. ROTATING OPTICAL POTENTIALS

Our approach to create rotating optical traps is based on
the interference of two Laguerre-Gaussian beams with waist
W and electric field LG0l (r, ϕ) ∝ (r/W )|l|eilϕe−r2/W 2

, where
r and ϕ represent the polar coordinates. The main trap of the
atoms is formed by a Gaussian LG00 beam, which is then
interfered with a second LG0l beam to induce rotation. The
LG0l mode carries l h̄ quanta of orbital angular momentum,
which is incorporated in the phase winding eilϕ that breaks the
rotational symmetry of the combined in-plane intensity pat-
tern. Furthermore, by modulating the relative phase between
both beams via the angular frequency detuning � we can
engineer the time-dependent intensity distribution (see also
Appendix A)

I (r, ϕ) = |
√

PLG00 − √
Ple

−i�t LG0l |2

∼ [1 − β∗
l rl cos(lϕ − �t )]e−2r2/W 2

. (1)

Here P and Pl denote the power of the main tweezer and the
perturbation beam, respectively, and β∗

l denotes the resulting
strength of the interference term.

All light fields are formed via a spatial light modulator
(SLM) in the Fourier plane of the atoms. In order to reduce op-
tical phase aberrations stemming from the optical elements in
the beam path such as the objective and the vacuum window,
we measure the optical aberrations directly with the atoms via
a phase-shifting interferometry algorithm [22,23].

A sketch of the SLM setup to generate rotating optical
potentials is illustrated in Fig. 2(a). Two Gaussian laser beams
(beam 1 in red and beam 2 in blue) are superimposed on
the SLM under a nonzero relative angle. The phase pattern
on the SLM forms two outgoing beams per incident beam
[24], denoted by A and B. On beams A we choose a constant
phase profile, leading to a Gaussian beam LG00 in the Fourier
plane, while on beams B we imprint the 2π l phase winding,
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FIG. 1. Engineering angular momentum eigenstates. A single
atom, prepared in the ground state of the optical tweezer, is set into
rotation by the rotating external light field. The Gaussian trapping
potential forms approximately a 2D harmonic oscillator with trap
frequency ω. We label the states |n, m〉 by shell number n and
angular momentum number m; for the states with maximal angular
momentum in each shell n = m we show the state’s density profiles,
where the arrows indicate the phase winding. The rotating light field
selectively couples the ground state to nonzero angular momentum
states (black dashed arrows).

which approximately forms an lth-order LG mode LG0l in
the Fourier plane.1 The relative angle between the outgoing
beams is adjusted with the SLM such that two of the four
beams are overlapped (beams 1A and 2B in Fig. 2). The other
unwanted diffraction orders are spatially filtered with an iris in
a Fourier plane behind the SLM, which is imaged on the plane
of the atoms. Beam 1A constitutes the main optical tweezer,
while beam 2B is the perturbation. In this configuration the
SLM allows us to independently modify the local phase of
the two overlapping outgoing beams. As both beams originate
from different beams incident on the SLM, properties like
beam power and global phase are individually addressable as
well.

The speed of rotation is set by the relative angular fre-
quency � of the tweezer and the perturbation beam, controlled
via an acousto-optical modulator for each beam. This allows
us to drive arbitrary frequency ramps, including a smooth
increase of the rotation frequency or jumps. The optical trap
geometrically rotates at rate �/l , which is l times slower than
the frequency detuning between the beams. This reflects the
l-fold symmetry of the LG0l mode arising from its phase
winding 2π l . In Fig. 2(b) we show as an example the case
of an LG02 mode which results in the elliptical shape of the
trapping potential rotating with a rotation frequency �/2.

III. COHERENT CONTROL OF ANGULAR
MOMENTUM STATES

The experiment starts by loading a gas of 6Li atoms from a
magneto-optical trap into a red-detuned crossed optical dipole
trap. After a sequence of radio-frequency pulses, we end up
with a balanced two-component mixture of 6Li in the hyper-
fine states |F = 1/2, mF = 1/2〉 and |F = 3/2, mF = −3/2〉;

1The phase winding imprinted via the SLM enforces the outgoing
beam to have a intensity depletion at its center. However, the exact
radial distribution will deviate from that of an LG0l mode. In general,
the beam will be a superposition of LGkl modes with differing k but
fixed l .

FIG. 2. Experimental setup to generate rotating optical poten-
tials. (a) A spatial light modulator (SLM) is placed in the Fourier
plane of the atom. By displaying an appropriate phase pattern on
the SLM, we generate two outgoing beams A and B from a single
incident beam with a different phase winding. Hence, two incident
beams, beams 1 and 2, with a small relative angle with respect to each
other, generate four outgoing beams. The SLM is used to overlap
beam 1A forming the optical tweezer and beam 2B forming the
perturbation, here displaced for clarity. (b) The tweezer is formed
by a radially symmetric Gaussian beam. We imprint a phase winding
on the perturbation beam to generate an LG mode of order l (here
l = 2) in the atomic plane. The interference of the two beams creates
an l-fold symmetric trap (for l = 2 an elliptically shaped trap). The
relative frequency � between the interfering beams and the order
l of the LG mode sets the rotation frequency �/l of the deformed
potential. The optical frequency of the first beam is denoted by ω1.

in [21] they are referred to as spin up |↑〉 and spin down
|↓〉, respectively. Next we load the atoms from the crossed
optical dipole trap into a tightly focused cigar-shaped optical
tweezer. We evaporate in the tweezer within 40 ms and reach
a highly degenerate sample of roughly 200 atoms in total
after evaporation. Subsequently, we use the spilling technique
pioneered in [9] to prepare one spinup and one spin-down
atom in the ground state of the optical tweezer with fidelities
95(3)%; the spilling procedure is performed at 300 G. We
ramp the magnetic field to 568 G at which the spin states
are noninteracting, which allows us to effectively consider
a single atom in the ground state throughout the remaining
paper (the other atom acts as an identical copy of the first one).

Our optical tweezer is formed by a Gaussian beam with
waist W ≈ 1.1 µm and leads to an approximately harmonic
potential with radial and axial trap frequencies of ω/2π ≈
28.1 kHz and ωax/2π ≈ 3.7 kHz, respectively. Since we pre-
pare a single atom in the ground state and the rotation only
couples to the radial motion of the atom, we neglect the axial
degree of freedom. The in-plane potential in the harmonic
expansion reads

Vpot = −V0e−2r2/W 2 ∼ mLiω
2

2
r2 + O(r4), (2)

where V0 denotes the potential depth of the tweezer, mLi is the
mass of 6Li, and the constant energy offset is neglected on the
right-hand side of the equation. Corrections to the harmonic
potential can be treated perturbatively, and we find that level
shifts for the states interesting to the present work are on the
order of several kilohertz (see Appendix B). We emphasize
that the anharmonicity breaks the equidistance of the level
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FIG. 3. Resonance spectrum and Rabi oscillations. (a) Reso-
nance spectrum of the excitation from the ground state |0, 0〉 to the
state |2, 2〉. The resonance is shifted down to �res ≈ 1.73ω compared
to 2ω due to the anharmonicity of the optical potential. (b) Rabi
oscillations between the ground state |0, 0〉 and state |2, 2〉 with Rabi
rates �Rabi/2π ≈ 0.44 kHz and a coherence time τcoh = 23(1) ms.

spacing in the harmonic trap, which enables closed transitions
between two distinct states.

To reach states with nonzero angular momentum we use
our all-optical approach described in the preceding section.
Low-lying states in the trap (i.e., states that do not probe the
Gaussian envelope of the perturbation beam) experience the
rotating perturbation (see also Appendix A)

Vp = βl r
l (eilϕe−i�t + H.c.) (3)

for an LG0l mode and perturbation strength βl = V0β
∗
l /2 


1. The perturbation couples the ground state |0, 0〉 to an an-
gular momentum state |n, m = l〉; the coupling is resonant
when h̄� is equal to the energy difference between the states
Enm − E00. To selectively address individual motional states,
we make use of the anharmonicity to render the ground state
|0, 0〉 and the state |n, m〉 a two-level system, in case the Rabi
rate remains lower than the anharmonicity.

To demonstrate our exquisite control of preparing motional
quantum states, we drive Rabi oscillations between |0, 0〉 and
|2, 2〉. To determine the resonance frequency, we spectroscop-
ically measure the single-particle occupation number in the
ground state 〈n̂0

↑ + n̂0
↓〉 after applying a rotating perturbation

for τ = 350 µs at different rotation frequencies, shown in
Fig. 3(a); here n̂0

↑ (↓) is the number operator for the spin-up
(spin-down) particle in the ground state. We measure a res-
onance frequency �/2π ≈ 48.59 kHz, which corresponds to
1.73ω in units of the radial trap frequency ω. The resonance
frequency is downshifted from 2ω due to the anharmonic-
ity of the optical potential. Indeed, the observed frequency
agrees well with the expected resonance based on first-order
perturbation theory, which gives 1.75ω (cf. Appendix B). On
resonance, we drive coherent oscillations between the ground
state |0, 0〉 and the state |2, 2〉 [see Fig. 3(b)], with a Rabi rate
�Rabi/2π ≈ 0.44 kHz and a coherence time τcoh = 23(1) ms
significantly longer than the duration of a π pulse.

The precise control of angular momentum eigenstates re-
quires us to overcome the following experimental challenges.
First, the relative positions of the optical tweezer and the
perturbation are required to be aligned on the order of the
radial extent of the wave function, which in our case is typ-
ically around 200 nm. To this end, we use an LG00 mode
as a resonant perturbation whose position is scanned across

the two-dimensional atom plane. By measuring the atom loss,
we determine the relative position in the atom plane to ap-
proximately 100 nm. Second, the anisotropy δω of the optical
tweezer breaks the rotational symmetry of the system and sets
an upper timescale 1/δω for the preparation of the angular
momentum eigenstates (see the next section for details).

After preparing an angular momentum eigenstate, we re-
lease the atom from the tweezer and perform a time-of-flight
expansion for tTOF = 2.5 ms to measure the momentum of the
atom using our single-atom fluorescence imaging technique
[25]. In order to keep the atom within the depth of focus
of our objective during the expansion, we rapidly turn on a
2D lattice with an axial confinement approximately matching
the axial trap frequency of the optical tweezer. We note that
this time-of-flight expansion is self-similar, reflecting the fact
that the harmonic-oscillator wave functions have the same
shape in their position and momentum space representation.
We reconstruct the 2D momentum density distribution of the
first three angular momentum eigenstates |0, 0〉, |1, 1〉, and
|2, 2〉 by taking 10 047, 3398, and 7998 snapshots of the
wave function, shown in Figs. 4(a)–4(c), respectively. While
all densities exhibit a rotationally symmetric distribution, the
nonzero angular momentum states show the expected den-
sity depletion at zero momenta and a maximum at

√
mpHO,

with the momentum scale in harmonic-oscillator units being
pHO = √

h̄mLiω.
To quantitatively compare the measured distribution to the

eigenstates of the 2D harmonic oscillator, we determine the
radial densities np by azimuthally averaging over the obtained
2D densities, shown in the bottom row of Fig. 4 for the respec-
tive angular momentum state |m, m〉. We find good agreement
between the fit-free theoretical curve and our experimental
data. The largest deviations occur at small momenta, which
we attribute to an imperfect π -pulse excitation caused by
fluctuations of the trap frequency (below 1%), which leaves
the atom in the ground state and therefore contributes to the
density at zero momenta.

IV. TIME EVOLUTION OF ANGULAR
MOMENTUM STATES

To confirm that the central depletion of the density dis-
tribution stems from a phase winding given by the imprint
of angular momentum, we investigate the time evolution of
the state |2, 2〉 in an anisotropic potential. In a radially sym-
metric trap an angular momentum state is an eigenstate of
the Hamiltonian. However, in an anisotropic potential the
angular momentum states become a superposition of the
true eigenstates of the system and thus evolve in time. We
make use of a small residual anisotropy present in the opti-
cal potential which we attribute to a slight ellipticity of the
tweezer. The new effective energy eigenstates of this system
are then formed by |±〉 = 1/

√
2(|2, 2〉 ± |2,−2〉) with an

energy difference defined as the anisotropy δω (for details
see Appendix C). The states |±〉 form a two-level system,
which can be depicted on the Bloch sphere, shown in Fig. 5(a).
Therefore, for the |2, 2〉 state we expect a characteristic time
evolution oscillating between the |2, 2〉 and |2,−2〉 states.

We perform Ramsey spectroscopy on the state |2, 2〉 and
observe coherent oscillations with a frequency given by the
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FIG. 4. Single-atom angular momentum eigenstates. Shown on top is the normalized two-dimensional momentum-space density distri-
bution and on the bottom the azimuthally averaged radial density of (a) the ground state |0, 0〉 with zero angular momentum and states with
nonzero angular momentum (b) |1, 1〉 and (c) |2, 2〉. The solid lines in the bottom row are theoretical calculations without free parameters.

anisotropy δω. In Fig. 5(b) we outline the experimental pro-
tocol. We use a π pulse to inject 2h̄ quanta of angular
momentum (gray solid arrow). Subsequently, we let the sys-
tem evolve for a delay time τR (red arrows), after which
we use a second π pulse to deexcite the evolved state
to the ground state (gray dashed arrow). We measure the

single-particle occupation number in the ground state 〈n̂0
↑ +

n̂0
↓〉 in Fig. 5(c), which oscillates with the energy difference

given by the anisotropy δω/2π = 27.3(4) Hz. This yields a
relative anisotropy δω/ω = 9.6 × 10−4. The state is evolving
on a timescale much longer than the duration of the π pulse,
which sets the timescale on which we prepare and detect the

FIG. 5. Ramsey spectroscopy. (a) In the presence of anisotropy, the superposition states |±〉 = 1/
√

2(|2, 2〉 ± |2, −2〉) form the new
eigenstates of the system with an energy difference given by the anisotropy δω. The initialized state |2, 2〉 is an equal superposition of the
eigenstates |+〉 and |−〉 and hence evolves over time τR on the equator of the Bloch sphere. (b) The anisotropy couples states which differ
in angular momentum. We harness this effect to perform Ramsey spectroscopy by preparing the state |2, 2〉 via a π pulse, followed by a
Ramsey delay time τR and a second π pulse to deexcite the atoms to the ground state. Depending on the contribution of the |2, −2〉 state, the
overlap with the ground state oscillates. (c) Ramsey spectrum of the state |2, 2〉. We measure an anisotropy of δω/2π = 27.3(4) Hz at a trap
frequency ω/2π ≈ 28.1 kHz, yielding a relative anisotropy δω/ω = 9.6 × 10−4. The coherence time is τ

(nonint)
coh = 35(3) ms. The amplitude

oscillates between two and zero atoms as we have two identical (noninteracting) copies of the same state in the tweezer. (d) Normalized
density distribution of clockwise (top row) and counterclockwise (bottom row) evolving states at different evolution times.
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state |2, 2〉. The coherence time of the Ramsey oscillations
is τ

(nonint)
coh = 35(3) ms. We argue that this timescale is limited

by noise of experimental parameters, predominantly the trap
depth, leading to loss of coherence via coupling to other
energy levels in the trap. We expect the coherence time to be
strongly dependent on the noise spectrum and levels close to
the targeted state. Indeed, we observe a significant increase
in coherence time when energy eigenstates close to the pre-
pared state are shifted away, as demonstrated in the related
Letter [21].

In Fig. 5(d) we show the 2D density distribution after
preparing the |2, 2〉 state and letting it evolve in the slightly
anisotropic optical potential for different quarter periods of
the Ramsey delay time. The density evolves from the |2, 2〉
state at τ = 0 to an equal superposition of the |2,±2〉 states
at τ = T/4; it continues to the |2,−2〉 state at τ = 2T/4
and further evolves again to a superposition of the |2,±2〉
states at τ = 3T/4, however, now tilted by 45 ◦ with respect
to the state at τ = T/4 (black dashed cross). By reversing
the phase winding on the SLM, we prepare the |2,−2〉 state,
which starts the precession on the Bloch sphere from another
starting point. Thereby, it confirms the imprint of the expected
phase winding of ±2 × 2π , which corresponds to an angular
momentum of 2h̄.

We further observe a slight deviation from the expected
densities at τ = T/4, 3T/4 (nonvanishing center density con-
necting one pair of lobes diagonally), which we attribute to
a weak coherent admixture of the |2, 0〉 state that mediates
the effective time evolution between the |2,±2〉 states (cf.
Appendix C).

V. CONCLUSION

We have demonstrated motional control of angular mo-
mentum eigenstates of a single atom in an optical tweezer.
By interfering the optical tweezer with an LG beam of or-
der l = m, we coherently coupled the ground state to a
nonzero angular momentum eigenstate |m, m〉. We confirmed
the preparation of the angular momentum eigenstates by mea-
suring the 2D densities and by observing the evolution of the
state in a slightly anisotropic trap. The latter allowed us to
reveal the phase imprint on the wave function through density
measurements at different times. Beyond the control of the
single-particle angular momentum eigenstates, this technique
enables the studies of ultracold atoms in optical potentials sub-
jected to synthetic magnetic fields [26], including the recent
realization of a two-particle Laughlin state [21].
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APPENDIX A: INTERFERENCE OF
LAGUERRE-GAUSSIAN BEAMS

The electric field of a Laguerre-Gaussian beam of order 0,
l , and waist W at its focus is given by

LG0l (r, ϕ, z = 0) =
√

2

π l!W 2

(√
2r

W

)l

eilϕe−r2/W 2
. (A1)

To create a rotating optical potential, we interfere the light
beam of the main tweezer, a Gaussian LG00 mode with power
P, with a Laguerre-Gaussian beam LG0l mode with power Pl ,
resulting in the intensity distribution

I (r, ϕ) = |
√

PLG00 − √
PlLG0l |2

= 2P

πW 2
e−2r2/W 2

∣∣∣∣∣∣1 −
√

Pl

P

(√
2r

W

)l

eilϕ

∣∣∣∣∣∣
2

. (A2)

High-intensity seeking atoms experience the potential

V (r, φ) = − V0e−2r2/W 2 + βl r
l (eilϕ + e−ilϕ )e−2r2/W 2

− 1

V0
β2

l r2l e−2r2/W 2
, (A3)

via the optical dipole force, where V0 = γ P/W 2, γ ≈
800h kHz µm2/mW, and βl = γ

√
2lPPl/W l+2. Here the first

term gives rise to a harmonic confinement at first order,
with trapping frequency ω = 2W −2√γ P/mLi and length scale
l0 = √

h̄/mLiω. As usual, we are interested in the regime in
which the harmonic approximation applies, i.e., l0 
 W , and
further in which the harmonic confinement is dominant, i.e.,
βl l l

0/h̄ω 
 1. Additionally, we assume
√

2lPl/P(l0/W )l 
 1
such that the β2 term may be neglected. Finally, by coherently
altering the phase of the Laguerre-Gaussian beam according
to e−i�t , we obtain Eq. (3),

Vp = βl r
l (eilϕ−i�t + c.c.). (A4)

Note that Rabi rates between the harmonic-oscillator states
introduced by the rotating perturbation are on the order of
βl l l

0/h̄.

APPENDIX B: ANHARMONIC LEVEL SHIFTS

The Gaussian potential in harmonic-oscillator units can be
rewritten according to

V = 1

2
r2 − 1

2g
(e−gr2 − 1) − 1

2
r2 ≡ 1

2
r2 + Vanh, (B1)

where g = 2l2
0 /W 2 ≈ 0.099 in our case. We are primarily

interested in states |m, m〉 of the harmonic oscillator, which
in real space are described by the wave function ϕm,m(r, φ) =√

1
πm! r

meimφe−r2/2. In first-order perturbation theory such
states experience an energy shift of

�Vanh = 1

2g

(
1 − 1

(1 + g)m+1

)
− 1

2
(m + 1)

≈ −1

4
(m + 2)(m + 1)g, (B2)
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where 〈m, m| e−gr2 |m, m〉 = (1 + g)−(m+1) and
〈m, m| r2 |m, m〉 = m + 1 were used. We note that the
expansion in g of Eq. (B2) is equivalent to the expansion of
the Gaussian potential in orders of r2. We find that the first
order in g is sufficient for the states considered in this work.

APPENDIX C: ANISOTROPIC COUPLING

Here we provide details on the effective coupling of the
state |2, 2〉 due to the presence of the remaining ellipticity of
the optical tweezer, illustrated in Fig. 6. We can incorporate
this ellipticity into the Gaussian trap model by inserting a
factor e−2ε(x2−y2 )/W 2

into the potential (2) which breaks the
azimuthal symmetry. At first order in ε it introduces a pertur-
bation term proportional to r2ei2ϕ + H.c. that couples states
with �m = ±2 with a generic state-dependent coupling δ2

linear in ε. Similarly, a term proportional to r4ei4ϕ + H.c.
appears at second order in ε (neglecting isotropic terms) and
couples states with �m = ±4 with coupling δ4. Therefore,
at first order, states of the ±2h̄ angular momentum manifold
are coupled to states with 0h̄ quanta of angular momentum,
and only at second order, there is direct coupling between
states in the ±2h̄ angular momentum manifold. Due to the
anharmonicity of the optical trap, the accessible |2, 0〉 state is
detuned from the |2, 2〉 and |2,−2〉 states by �′ � δ2, which
is on the order of kilohertz. Hence, we expect an effective cou-
pling δ4 − δ2

2/�
′ ∼ ε2 only between the degenerate clockwise

FIG. 6. Anisotropic coupling. The anisotropy breaks the az-
imuthal symmetry of the optical tweezer, leading to a coupling of
states with �m = ±2 to first order and �m = ±4 to second order in
ε (see the text for details).

and counterclockwise rotating states. The new effective en-
ergy eigenstates are given by |±〉 = 1/

√
2(|2, 2〉 ± |2,−2〉).

The energy difference between the eigenstates is defined as
the anisotropy δω ≈ 2δ4 − 2δ2

2/�
′. The states |±〉 then effec-

tively form a two-level system.
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