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The classification and characterization of topological phases of matter is well understood for ground
states of gapped Hamiltonians that are well isolated from the environment. However, decoherence due to
interactions with the environment is inevitable—thus motivating the investigation of topological orders
in the context of mixed states. Here, we take a step toward classifying mixed-state topological orders
in two spatial dimensions by considering their (emergent) generalized symmetries. We argue that their
1-form symmetries and the associated anyon theories lead to a partial classification under two-way con-
nectivity by quasilocal quantum channels. This allows us to establish mixed-state topological orders that
are intrinsically mixed, i.e., that have no ground-state counterpart. We provide a wide range of examples
based on topological subsystem codes, decohering G-graded string-net models, and “classically gauging”
symmetry-enriched topological orders. One of our main examples is an Ising string-net model under the
influence of dephasing noise. We study the resulting space of locally indistinguishable states and compute
the modular transformations within a particular coherent space. Based on our examples, we identify two
possible effects of quasilocal quantum channels on anyon theories: (1) anyons can be incoherently pro-
liferated—thus reducing to a commutant of the proliferated anyons, or (2) the system can be “classically
gauged,” resulting in the symmetrization of anyons and an extension by transparent bosons. Given these
two mechanisms, we conjecture that mixed-state topological orders are classified by premodular anyon
theories, i.e., those for which the braiding relations may be degenerate.
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I. INTRODUCTION

Quantum many-body systems showcase a remarkably
diverse range of quantum phases of matter. The ground
states of gapped Hamiltonians, in particular, can exhibit
topological order (TO), where the wave function is long-
range entangled and cannot be smoothly deformed into
a product state without encountering a phase transition.
TO leads to a variety of intriguing phenomena, includ-
ing localized excitations with unusual braiding statistics,
and topologically protected ground-state degeneracies on
a torus. These features endow TO with intrinsic robust-
ness against local perturbations and make them of great
promise for applications in fault-tolerant quantum infor-
mation processing.

In the past two decades, significant progress has been
made in classifying and characterizing TOs in gapped
ground states [1–4]. By now, mathematical frameworks
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have been established to classify TOs in (2+1)d: it is
widely accepted that TOs are completely determined (up to
invertible phases of matter) by their associated anyon theo-
ries, which capture the universal properties of the localized
quasiparticle excitations.

However, the majority of the existing studies [5–7]
assume the TO is in a well-isolated system, and thus is
described by pure states. In reality, a physical system is
influenced by its environment and is best captured by a
mixed state. This is particularly relevant for applications
in quantum information, as the resilience to environmen-
tal noise is a key requirement for a quantum memory.
Therefore, understanding TOs in mixed states is of both
fundamental importance and a timely issue.

It is well understood that TOs in (2+1)d are not sta-
ble against coupling to thermal baths [8–12]: they can be
smoothly connected to infinite-temperature Gibbs states
without undergoing any thermal phase transition. This
agrees with the strong belief that there is no self-correcting
quantum memory at finite temperature in (2+1)d [13,14].
On the other hand, the very fact that a topological quan-
tum memory can exist suggests [15] that TOs are robust
against local noise, and thus, should be well defined for
mixed states.

A useful theoretical setup to investigate these prob-
lems is a many-body ground state subject to quasilocal
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quantum channels (QLCs) and measurements. Examples
recently studied in this kind of setup include quantum crit-
ical states [16–21], symmetry-protected topological (SPT)
phases [22–30], and topological states [31–35]. In general,
it has been found that decoherence can lead to distinct
mixed-state phases of matter. For example, it was shown
in Refs. [32,35] that there are distinct error-induced phases
that emerge from noisy TOs, which can be characterized by
different topological boundary conditions in the replicated
Hilbert-space representation.

A. Summary of the main results

In this work we systematically study mixed-state TOs
in two dimensions arising from decohering ground states
of gapped Hamiltonians and develop a general framework
with the goal of classifying TOs in mixed states.

We begin by giving a working definition of mixed-state
TO in Sec. II, i.e., we specify the class of mixed states
considered in this work and define an equivalence rela-
tion on them such that the equivalence classes correspond
to distinct mixed-state phases. We comment on the fact
that, similar to ground-state TOs, mixed-state TOs exhibit
locally indistinguishable states on manifolds of nontriv-
ial topology. We review the toric code (TC) under bit-flip
noise, as a first example.

We then consider general topological Pauli stabilizer
states subject to Pauli noise in Sec. III. We show that the
theory of subsystem codes provides a natural framework
for studying such systems. We define the associated sub-
system code by a “gauge group,” which is generated by
the original stabilizer group and the noise operators. In the
limit of maximal decoherence, we show that the effect of
noise is to completely decohere the gauge subsystem of the
subsystem code, leaving the logical subsystem intact.

We focus on a special class of Pauli noise, for which
the associated subsystem code is topological (in the sense
of Ref. [36]). Such mixed states are associated with
an Abelian anyon theory, which intuitively speaking,
describes the “strong” 1-form symmetries of the mixed
state. Unlike the ground-state case, the Abelian anyon
theory is not required to be modular, i.e., it may pos-
sess nontrivial anyons that braid trivially with all other
anyons. Such anyon theories are said to be “premodu-
lar.” This suggests a classification of mixed-state TOs
that is more diverse than the pure-state classification for
gapped ground states. We study how the anyon theory is
affected by a QLC, which leads to an algebraic equivalence
relation between premodular Abelian anyon theories. We
further define a topological invariant, which gives a partial
classification of mixed-state TOs.

In Sec. V, we move beyond the Pauli stabilizer formal-
ism and discuss mixed-state TOs characterized by non-
Abelian anyon theories. We start by considering mixed
states constructed from non-Abelian string-net models by

adding local noise. Our primary example is a mixed state
constructed from the Ising string-net model by incoher-
ently proliferating bosons. The state is characterized by a
strong 1-form symmetry associated to an anyon theory that
is both non-Abelian and nonmodular.

We generalize the construction to string-net models with
a G-graded fusion category as an input. We then further
extend the result in Sec. V C to symmetry-enriched TOs
(which may or may not admit a string-net model), and
build a mixed state by “classically” gauging the symme-
try. In Secs. V D, we give the most general construction of
mixed states based on a premodular anyon theory, using
the Walker-Wang model. Finally, in Sec. V E we discuss
algebraic equivalence relations among premodular anyon
theories induced by QLCs, and comment on the resulting
mixed-state TOs that have no pure state counterpart, i.e.,
that are intrinsically mixed-state TOs.

II. GENERALITIES

A. Locally correlated mixed states

To define TO in the context of pure states, we restrict
ourselves to the ground states of gapped local Hamiltoni-
ans, which we refer to as gapped ground states (GGSs). It is
believed that a GGS encodes all of the characteristic data
of the TO, including the universal behavior of the local-
ized excitations of a parent Hamiltonian (e.g., the fusion
and braiding of the excitations) [37]. For the purpose of
defining TO, we also restrict to GGS that are short-range
correlated, i.e., the connected correlator of any pair of
local operators decays rapidly with their separation. In
particular, this rules out long-range correlated states asso-
ciated with spontaneous symmetry breaking (e.g., the GHZ
states).

For a generic mixed state, there is no clear notion of a
parent Hamiltonian. Therefore, the class of mixed states
that should be considered in defining TOs is more subtle.
Inspired by short-range correlated GGSs, in this work, we
consider mixed states with the following two properties:
(1) they can be purified into a GGS, as shown in Fig. 1,
and (2) they have local correlations.

FIG. 1. Graphical representation of a purification into a GGS.
We restrict the discussion to mixed states that can be purified into
GGSs, i.e., ρ = TrA[|ψGGS〉〈ψGGS|], for some GGS |ψGGS〉 and
subsystem A. We also require that ρ has short-ranged Rényi-1
and -2 correlations, according to Definition 3. We refer to states
that satisfy these properties as locally correlated mixed states.
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Below, we clarify the sense in which the mixed states are
required to have local correlations. We begin by defining
the Rényi-1 and Rényi-2 expectation values.

Definition 1. For a mixed state ρ and an operator M , the
Rényi-1, Rényi-2, expectation values are

E(1)ρ (M ) = Tr[Mρ], (1)

E(2)ρ (M ) = Tr[MρM †ρ]
Tr[ρ2]

. (2)

Here, the Rényi-1 expectation value is the usual expec-
tation value. The Rényi-2 expectation value, on the other
hand, can be understood using the Choi-Jamiołkowski rep-
resentation of ρ, defined in the doubled Hilbert space.
From this perspective, the expectation value E(2)ρ (M ) is
the ordinary expectation value of M ⊗ M † for the dou-
bled state. We also point out that, if ρ = |ψ〉〈ψ | is a
pure state, then the Rényi-2 expectation value reduces to
| 〈ψ |M |ψ〉 |2. In a similar fashion, one can define a Rényi-n
expectation value for n replicas of the Hilbert space.

We can now define the connected correlators that corre-
spond to the Rényi-n expectation values, for n = 1, 2.

Definition 2. For a mixed state ρ and operators Mi and
Mj , the Rényi-n connected correlator (n = 1, 2) is

C(n)ρ (Mi, Mj ) = E(n)ρ (MiMj )− E(n)ρ (Mi)E(n)ρ (Mj ). (3)

Similarly one can define fidelity connected correlator using
Eq. (5).

The Rényi-2 correlator can again be interpreted as an
ordinary connected correlator within the doubled Hilbert
space.

Finally, we can define Rényi-n locally correlated mixed
states, for n = 1, 2.

Definition 3. A mixed state ρ is Rényi-n locally corre-
lated (n = 1, 2), if for any operators Mi and Mj localized
near the sites i and j , we have

C(n)ρ (Mi, Mj ) = O(|i − j |−∞), (4)

where O(|i − j |−∞) is a function that decays faster than
any power law in |i − j |.

Note that Rényi-1 locally correlated states are short-
range correlated states in the usual sense.

More formally, we define mixed-state TOs in this work
in terms of mixed states ρ with the following three proper-
ties:

(1) ρ can be purified into a GGS.

(2) ρ is Rényi-1 locally correlated.
(3) ρ is Rényi-2 locally correlated.

In a slight abuse of nomenclature, we refer to these mixed
states simply as “locally correlated mixed states.”

The first condition generalizes the notion of short-range
entangled (SRE) mixed states proposed in Ref. [24] (see
also Ref. [27]). Namely, a mixed state is SRE, if there is a
purification into a SRE GGS. Here, we require that topo-
logically ordered mixed states can be purified into GGSs
more generally. The second condition rules out spon-
taneous symmetry breaking and long-range correlations,
similar to the case for pure-state TOs.

The third condition is motivated by recent progress in
understanding spontaneous symmetry-breaking order in
mixed states. In particular, it was found that observables
that are nonlinear in the density matrix are necessary to
characterize certain phases and phase transitions in mixed
states [23,27,32]. For example, the phenomenon known
as strong-to-weak symmetry breaking can be detected by
long-range order in the Rényi-2 correlations of local order
parameters [23,27,38].

We emphasize that this notion of locally correlated
mixed states allow us to give a working definition of TO.
We do not claim that the conditions on mixed states above
are the most exhaustive or the most general. Ultimately,
one may want to consider a class of mixed states with no
reference to Hamiltonians or replica Hilbert spaces. We
comment further on this point in Sec. VI. It also may be
advantageous to replace the Rényi-2 expectation values
with those based on the fidelity:

EF
ρ (M ) = F(ρ, MρM †) = Tr

[√√
ρMρM †√ρ

]
. (5)

The fidelity expectation value was proposed in the con-
text of strong-to-weak spontaneous symmetry breaking in
Ref. [38] and was shown to correctly capture the decoding
transition in the bit-flip decohered toric code state. How-
ever, in general the fidelity correlations are much more
difficult to compute, so we will use Rényi-2 correlators
mostly in this work.

We note that a broader class of mixed states are those
that can be decomposed into a convex sum of pure GGSs.
All the examples of mixed states considered in this work
can be represented as such a convex sum, but the con-
verse is not true. The simplest counterexample is the
thermal state of a classical Hamiltonian tuned to a finite-
temperature critical point. Such a state contains purely
classical long-range correlations and thus can not be puri-
fied into a GGS. Even assuming that correlation functions
of local operators are all short range, we can still find fully
separable mixed states, which do not admit a purification
into a GGS [27].
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An interesting question is whether a thermal state is
locally correlated. Since a thermal state can always be puri-
fied into a thermofield double state, the question becomes
whether the thermofield double state is the ground state of
a gapped local Hamiltonian. To the best of our knowledge,
the general case remains open, although Ref. [39] proposed
parent Hamiltonians for thermofield double states and pre-
sented evidence that the Hamiltonians are (quasi)local. It
was shown in Ref. [40] that thermofield double states for
two-dimensional (2D) Kitaev’s quantum double models
are SRE. The same is true for thermal states of one-
dimensional (1D) local Hamiltonians.

B. Equivalence relation on mixed states

For ground states, a gapped phase is defined as an equiv-
alence class of short-range correlated GGS, where the
equivalence relation is given in terms of quasilocal uni-
tary circuits (QLUCs), with at most polylog depth in the
system size. Namely, two GGSs belong to the same phase
if and only if they can be mapped to each other by a
QLUC. Here, QLUC serves as a model for quasiadiabatic
evolution generated by a gapped local Hamiltonian.

A natural generalization of QLUCs to mixed states is a
quasilocal quantum channel (QLC), e.g., a finite time evo-
lution generated by a local Lindbladian. However, because
quantum channels are in general noninvertible, in order
to define an equivalence relation, it becomes necessary to
consider two-way connectedness by QLCs, which we take
as the definition of mixed-state phase [12,24]. Below, we
first formalize the definition of a QLC (depicted in Fig. 2).

Definition 4. A quantum channel N is a QLC if it can
be purified into a circuit V, whose depth scales at most as
polylog(L) with the linear system size L, acting on H ⊗
HA. Here, H and HA are the physical and ancillary Hilbert
spaces, respectively. The action of N on a mixed state ρ is
thus given by TrB[V†(ρ ⊗ |0〉〈0|)V], where |0〉 represents a
many-body product state in HA, and B is some subsystem,
which may include A.

FIG. 2. Graphical representation of a QLC N . The action of
the QLC N on a density matrix ρ is equivalent to, in sequence,
adding ancilla to ρ, conjugating by a QLUC V, and tracing out
the ancilla (see Definition 4).

Following Refs. [12,24,27], we define mixed-state TOs
using the following equivalence relation:

Definition 5. Two locally correlated mixed states ρ1
and ρ2 are equivalent, or belong to the same mixed-state
TO, if and only if they are two-way connected by QLCs.
Namely, there exists two QLCs N12 and N21 such that
ρ1 = N12(ρ2) and ρ2 = N21(ρ1).

We point out that this definition is closely related to
the one in Ref. [41], which essentially amounts to replac-
ing QLCs with fast evolution by local Lindbladians. That
is, evolution for time that grows sublinearly (e.g., poly-
log) with the system size. We also note that, due to the
definition of a QLC, one is free to add or remove ancilla
without changing the mixed-state TO.

It is natural to define the trivial phase as the unique
equivalence class containing the product states. In all
known examples, a trivial mixed state can be written as
a convex sum of SRE states, however the converse is not
necessarily true. According to this definition, the maxi-
mally mixed state also belongs to the trivial phase. It can
be constructed from a product state by applying depolariz-
ing noise and the product state can be constructed from it
by tracing it out and tensoring with the product state. Sim-
ilar to the ground-state case, we are allowed to freely stack
trivial states, as adding unentangled ancilla is part of the
definition of QLCs. We also note that all bosonic invert-
ible GGSs, e.g., the E8 state in (2+1)d, belong to the trivial
mixed-state phase [24]. This in particular means that the
chiral central charge is no longer a well-defined invariant
for mixed state TOs.

Let us conclude the section with some physical exam-
ples of QLCs. An important class of examples is the time
evolution of open quantum systems governed by Lindbla-
dian equations. If the Lindbladian is local, then finite-time
evolution under the Lindbladian corresponds to a QLC on
the initial state.

We also point out that, intuitively, one expects that
thermal states of a local Hamiltonian at different positive
temperature belong to the same mixed-state phase if there
is no thermal phase transition in between. This has been
proven in 1D. Namely, all thermal states of local Hamil-
tonians in 1D with positive temperature can be two-way
connected by QLCs [42].

It is also natural to expect that a topological code with a
small amount of noise, which can be modeled by applying
a finite-depth quantum channel close to the identity to the
pure state, belongs to the same phase as the pure state. Thus
there must be a “recovery channel” to map the decohered
state back to the pure state. The recovery channel should
be a QLC in order for the code to be error correctable. This
has been demonstrated explicitly in the example of a Z2
TC with bit-flip noise in Ref. [12] (see also Refs. [43,44]).
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C. Locally indistinguishable states

A hallmark of TO for GGSs is that there is a topological
degeneracy when the system is put on a torus—with the
dimension of the ground-state subspace being equal to the
number of anyon types. The degeneracy for a higher-genus
surface can also be determined from the anyon theory.
Moreover, the ground states are locally indistinguishable,
meaning that any two ground states |ψ1〉 and |ψ2〉 have the
property

〈ψ1|M |ψ1〉 − 〈ψ2|M |ψ2〉 = O(L−∞), (6)

for any quasilocal operator M . Here, L is the system size,
and O(L−∞) is a function that decays faster than any power
law of L, e.g., e−(L/ξ)α for any α > 0.

The notion of local indistinguishability naturally gener-
alizes to mixed states [45]. We say that two mixed states
ρ1 and ρ2 are locally indistinguishable, if they satisfy

Tr[Mρ1] − Tr[Mρ2] = O(L−∞), (7)

for any quasilocal operator M .
In contrast to the pure-state case, the collection of

locally indistinguishable mixed states do not form a vec-
tor space. Rather they form a convex manifold. As pointed
out in Ref. [35], it is insightful to consider the extremal
submanifold, i.e., the submanifold of extremal points. In
general, this submanifold contains several connected com-
ponents. Each connected component can have one of the
following two possibilities:

(1) It is a single point. In this case, the state is com-
pletely “classical.”

(2) There is a continuum of extremal points forming a
connected manifold of dimension d. Physically, this
manifold should be isomorphic to the manifold of
pure states in a d-dimensional Hilbert space. We
refer to this space as a “coherent space” of dimen-
sion d. Note that an isolated extremal point can be
thought of as a 0-dimensional coherent space.

We also note that two locally indistinguishable states ρ1
and ρ2 remain so under an arbitrary QLC. Explicitly, for
an arbitrary QLC N and a quasilocal operator M , we can
compute

Tr[MN (ρ1)] = Tr[N ∗(M )ρ1],

= Tr[N ∗(M )ρ2],

= Tr[MN (ρ2)],

(8)

where N ∗ is the dual channel, [46] which preserves
quasilocality. Therefore, the states N (ρ1) and N (ρ2) are
also locally indistinguishable for any QLC N .

However, the discussion above does not mean that the
convex manifold of locally indistinguishable states must be

invariant under QLCs, for two reasons. First, two locally
distinguishable states may become indistinguishable under
the QLC. This can happen, for example, if N ∗(M ) = 0
for all quasilocal operators M that distinguished the two
states. An example that illustrates this point is discussed in
Sec. II D. On the other hand, it can also happen that two
different states that are locally indistinguishable become
identical under a QLC. A simple example is a swap chan-
nel that takes any (pure state) TO to a trivial product state,
under which the space of locally indistinguishable states is
completely erased. In either case, the QLC is degenerate,
i.e., it has a nontrivial kernel when viewed as a linear map
on the space of operators.

In fact, the convex manifold of locally indistinguishable
states is not an invariant for a mixed-state phase, as illus-
trated by the example in Sec. II D. However, mixed-state
TOs still give rise to coherent spaces of locally indis-
tinguishable states on closed oriented manifolds, which
depend on the topology of the manifold—similar to
ground-state TOs. We conjecture that there is a subspace
within the coherent space that is robust to perturbations
of the mixed state, and that this subspace provides an
invariant for the mixed-state phase.

Lastly, one could consider the Rényi-2 (Rényi-n) expec-
tation values to distinguish between states. It is possible
that these higher-Rényi expectation values are able to
distinguish between states that are otherwise locally indis-
tinguishable according to the Rényi-1 expectation values.
One can thus formulate different notions of local indistin-
guishability based on observables that are nonlinear in ρ,
as recently proposed in Ref. [35]. Although, we do not con-
sider such notions of local indistinguishability any further
in this work.

D. Example: decohered 2D toric code

To exemplify the general discussion above, we consider
decohering a (2+1)d TC state with bit-flip noise [15,31].
We recall that the TC state is defined on a square lattice
with a qubit on each link, and with stabilizers given by

Av =
∏
v∈e

Xe, Bp =
∏
e∈p

Ze. (9)

A ground state |ψ〉 is defined by Av |ψ〉 = |ψ〉 , Bp |ψ〉 =
|ψ〉 for all v and p . The corresponding density matrix is
denoted by ρ0 = |ψ〉〈ψ |. Following the common conven-
tion, we call a vertex violation Av = −1 an e particle at the
vertex v, and a plaquette violation Bp = −1 an m particle
in the plaquette p .

Now, suppose that the TC is subjected to noise described
by the bit-flip channel ρX = NX (ρ0), defined as

NX =
⊗

e

NX ,e, NX ,e(ρ) = (1 − p)ρ + pXeρXe. (10)
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Here, p parameterizes the strength of the decoherence and
satisfies 0 ≤ p ≤ 1/2. For small p , the TO still persists
up to some critical value p = pc ≈ 0.109. For p > pc, the
system enters a new error-induced phase where the TO
is lost. This transition can be characterized using quan-
tum information-theoretic measures [31]. For example, for
small p we can view the TC as a quantum memory that
encodes two logical qubits on a torus. For p > pc, no
coherent quantum information can be stored on a torus
anymore. The same transition can be detected by topo-
logical entanglement negativity, which is ln 2 before the
transition and 0 after [31].

To understand the error-induced phase, it is particularly
instructive to consider the strong-decoherence limit, i.e.,
p = 1/2. There are a number of equivalent ways to rep-
resent the density matrix in this limit. If we work in the
eigenbasis of the Xe operators, and use the loop picture,
where Xe = −1 means the link e is occupied by a Z2 string,
then the density matrix becomes a classical ensemble of X
loops:

ρX ∝
∑

C

|C〉〈C| . (11)

Here, C denotes closed loops on the lattice.
One can think of this mixed state as a classical Z2 gauge

theory and the C as the electric field lines, defined by the
Gauss law, or the closed-loop condition. To some extent,
the ensemble represents a classical TO [47]: when put on
a torus, there are four different ensembles distinguished
by the winding number mod 2 of loops around the two
noncontractible cycles. These four ensembles can not be
distinguished by local observables, but they cannot form
coherent superposition. Instead, one can form a classical
mixture (i.e., a convex sum) of the classical states. In other
words, the space of locally indistinguishable states con-
sists of four isolated extremal points (see below for a more
detailed discussion) [35].

Another way to write the state is to directly expand the
bit-flip channel:

ρX = 1
2Ne

∑
ne=0,1

(∏
e

X ne
e

)
|ψ〉〈ψ |

(∏
e

X ne
e

)
. (12)

Note that the state
∏

e X ne
e |ψ〉, in general, contains a num-

ber of m particles. Fixing a particular configuration of m
particles, there are 2Nv−1 many ways to create it (the −1
is because

∏
v Av = 1 on a torus), so the state can also be

written as

ρX = 1
2Ne−Nv+1

∑
m

|m〉〈m| . (13)

Here, m denotes a configuration of m anyons, with the con-
straint that, in total, there should be an even number of

them, and |m〉 is the state with the corresponding configu-
ration of m anyons. Therefore, the density matrix describes
an “incoherent” proliferation of m particles. This should be
contrasted with a “coherent” proliferation:

|ψm〉 ∝
∑

m

|m〉 =
∏

e

1 + Xe

2
|ψ〉 , (14)

which is a product state with Xe = 1 everywhere.
A useful fact is that for p > pc, the decohered TC state

can be purified into a SRE state. This is most easily seen
at p = 1/2, where one can start from the product state
|Xe = 1〉, and apply the following quantum channel:

E =
∏

p

Ep , Ep = 1
2
(ρ + BpρBp). (15)

Reference [34] showed that the same is true for pc < p <
1/2. This allows one to show that the entire p > pc phase
is trivial, in the sense defined in Sec. II B. For p = 1/2,
we have already found a channel that maps a product state
to a decohered TC state. To show two-way connectedness,
we need to find a channel to map the decohered TC state
to a product state. This can be done by tracing out the
decohered state and appending a product state.

Finally, let us discuss some subtleties related to the
space of locally indistinguishable states for the system
defined on a sphere. For simplicity, let us focus on those
states that are locally identical to the decohered TC ground
state. We first notice that the full Hilbert space of the sys-
tem on a sphere can be labeled by the eigenvalues of Av
and Bp [48].

Let us now consider the subspace Hm of states that sat-
isfy Av = 1, for every vertex v. In other words, Hm is the
space of states with only m anyon excitations. The most
relevant local operator is Bp here, which detects whether
there is an m anyon. The plaquette operators and the Pauli-
X operators, in fact, generate all operators that keep the
subspace Hm invariant. For a state |ψ〉 ∈ Hm, we have

Tr
[
NX (|ψ〉〈ψ |)Bp

] = Tr
[|ψ〉〈ψ |NX (Bp)

]
(16)

= (1 − 2p)4 〈ψ |Bp |ψ〉 . (17)

Curiously, if p = 1/2, then the expectation value of Bp is
always 0 for any |ψ〉 ∈ Hm. Thus the dimension of locally
indistinguishable states is 2Np −1, where Np is the number
of plaquettes. This is an example of the phenomenon men-
tioned earlier, i.e., that locally distinguishable states can
become indistinguishable under a QLC [49].

However, if p �= 1/2, clearly the result is very different.
For example, if |ψ〉 contains m anyons at fixed loca-
tions, NX (|ψ〉〈ψ |) is still locally distinguishable from the
decohered ground state. Thus, identifying locally indistin-
guishable states amounts to finding states in the subspace
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Hm such that the expectation value of Bp is sufficiently
close to 1. One example is to consider a state |p1, p2〉
with a pair of m anyons, say at plaquettes p1, p2, and then
superpose all such states with two m anyons:

|�〉 =
√

2
Np(Np − 1)

∑
p1 �=p2

|p1, p2〉 . (18)

We find that 〈�|Bp |�〉 = 1 − O(L−2). However, this does
not meet the criterion for local indistinguishability in
Eq. (7), as we require that the correction should decay
superpolynomially in L. In fact, this is the generic situa-
tion: in order for 〈Bp〉 to be close to 1, the density of m
anyons must be 0. In other words, there are O(1) such
anyons. Suppose the typical number of m anyons is n.
To get a uniform state one has to superpose states with
different configurations, so the weight of a state with a
definition configuration is on average O(L−n). Then the
expectation value 〈Bp〉 is 1 − O(L−2), which does not sat-
isfy the criterion for local indistinguishability. We thus find
that the space of locally indistinguishable states on a sphere
consists of just a single classical state.

Now, we consider locally indistinguishable states on a
torus. To avoid the subtleties of p = 1/2, we take p to
be slightly below 1/2. We know that for pc < p < 1/2
the manifold of locally indistinguishable states has four
extremal points, labeled by the eigenvalues of the noncon-
tractible Wilson loops of m anyons. This is different from
a product state, but does not preclude the decohered state
from having trivial mixed-state TO.

In summary, below pc, there is a continuum of locally
indistinguishable states on a torus, signifying that the noise
can be decoded and the system can be used as a quantum
memory. On the other hand, above pc and with p �= 1/2,
the space of locally indistinguishable states on a torus has
four extremal points, representing the fact that the system
serves as a classical memory that stores two bits.

III. DECOHERED PAULI-STABILIZER STATES

In this section we study general topological stabilizer
states, under Pauli decoherence channels. More explic-
itly, we consider a Pauli-stabilizer state |ψ〉 defined by the
Pauli-stabilizer group S0. Namely, |ψ〉 satisfies

S |ψ〉 = |ψ〉 , ∀ S ∈ S0. (19)

We assume that S0 admits a set of local generators and that,
on an infinite plane, the only Pauli operators that commute
with every element of S0 are the elements of S0. These
are the conditions for a stabilizer code to be topological
[50,51].

Then, suppose that we apply a QLC N of the form:

N =
∏

i

Ni, Ni(ρ) =
n∑

r=1

prPi,rρP†
i,r, (20)

where i labels lattice sites, Pi,r is a local Pauli operator,
and p1, p2, . . . , pn satisfy pr ≥ 0 and

∑n
r=1 pr = 1. Here,

we assume the channel is translation invariant. Note that
because the Pi,r are Pauli operators, they always com-
mute up to a phase factor. Therefore, the channels actually
commute:

Ni ◦ Nj = Nj ◦ Ni. (21)

Denote by G the algebra of local operators generated by
the Pi,r’s and S0. In order to analyze the effect of the
quantum channel, it turns out to be convenient to think of
the problem as a subsystem code, which we now briefly
review.

A. Topological subsystem codes

Let us briefly review the theory of Pauli subsystem
codes [36,52–54]. The starting point is the “gauge group”
G, which is a group of Pauli operators. The elements of G
are referred to as gauge operators. We then define the sta-
bilizer group S of the subsystem code as the center of G,
denoted as Z(G):

S ∝ Z(G). (22)

Here, the proportionality symbol means that S is defined
up to roots of unity. We return to this issue later. The
stabilizer group defines the code space HC:

HC = {|ψ〉 : S |ψ〉 = |ψ〉 , ∀S ∈ S}. (23)

By Eq. (22), the gauge operators preserve the code space.
We show the containment of the various groups of Pauli
operators in Fig. 3.

Unlike ordinary stabilizer codes, in a subsystem code,
quantum information is only stored in a subsystem of HC,
known as the logical subsystem. More precisely, with G
and S , we have the following decomposition of the Hilbert
space:

H = HC ⊕ H⊥
C , HC = HG ⊗ HL. (24)

Here, HG is the gauge system, such that G/S acts on HG
faithfully and irreducibly as the Pauli algebra. HL is the
logical subspace, on which the gauge operators act as the
identity. When G is proportional to S , the gauge subsys-
tem HG is trivial and the subsystem code is equivalent to a
stabilizer code defined by S .
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FIG. 3. Containment of the groups for defining a topological
subsystem code. The gauge group G (yellow) is an arbitrary sub-
group of the Pauli groupP (purple). The stabilizer groupS (blue)
is the center of G up to roots of unity. Finally, the subgroup of
locally generated stabilizers Sloc (red) is contained in S . If the
subsystem code is topological, then G admits a set of local gen-
erators, and on an infinite plane, there are no logical operators
and Sloc = S .

Similar to stabilizer codes, a logical operator is a Pauli
operator that preserves the code space. All logical oper-
ators form the group ZP(S). Here, ZP(S) denotes the
centralizer of S in the Pauli group P , i.e., the subgroup
of Pauli operators that commute with every element of S .
Note that the centralizer can contain elements outside of
the gauge group, so Z(G) ⊂ ZP(S). A nontrivial logical
operator, in particular, should act nontrivially on HL; this
is given by the group ZP(S)/G

So far, our definition of subsystem codes is for a generic
quantum system without any notion of locality. We further
say a subsystem code is topological if (1) G admits a set
of local generators, and (2) on an infinite plane, there are
no logical operators and S can be generated by local oper-
ators. Note that the condition on the stabilizer group in (2)
does not have to hold for arbitrary topologies — i.e., on a
torus, there may be stabilizers that cannot be generated by
local stabilizers [36].

In order to study the decohered stabilizer code on torus
(or higher-genus surfaces), it is useful to introduce fur-
ther structure, since the stabilizer group S may contain
nonlocal generators. We therefore split S into a locally
generated subgroup Sloc and ST, such that S/Sloc = ST.
Here, the subgroup Sloc is generated by geometrically
local stabilizers. We define a “local” code space according
to Sloc:

H = HlC ⊕ H⊥
lC. (25)

Namely, HlC is the subspace with S = 1 for every S ∈ Sloc.
Then, we further split HlC according to eigenvalues of

ST. Denote by t a group homomorphism from ST to U(1),
such that t(T) is an eigenvalue of T. Indexing the genera-
tors of ST by i, we can define a vector t whose ith entry is

ti = t(Ti). With this, HlC decomposes as

HlC =
⊕

t

Ht
lC, (26)

where the subspace Ht
lC is labeled by a vector t. Every state

in Ht
lC is an eigenstate of T ∈ ST with eigenvalue ti = t(T).

We take Ht=1
lC to be the code space HC. Each Ht

lC can be
further factorized as

Ht
lC = Ht

G ⊗ Ht
L. (27)

For each t subspace, we can define a stabilizer group S t,
which is generated by Sloc and t(Ti)

−1Ti.

B. Decohered topological stabilizer states

Now, we return to the decohered stabilizer code. The
initial (local) stabilizer group of the code is S0. The Pauli
errors Pi,r generate a group E. It is natural to assume that
any element e of E at least fails to commute with some
stabilizer in S0, otherwise, by the assumption of S0 being
topological, e must belong to S0 as well.

We consider the subsystem code defined by the gauge
group G = 〈S0, E〉. We assume that the subsystem code
defined by this gauge group is topological. We emphasize
that this is a nontrivial condition. Indeed in Sec. III D 3,
we discuss an example where this condition is not met. We
note that, in particular, the topological condition guaran-
tees that the decohered stabilizer state is locally correlated,
in the sense of Sec. II. First of all, the decohered state
admits a purification into a GGS, since it is constructed
by adding Pauli noise to a topological stabilizer state. Fur-
thermore, we show in Appendix B that it is Rényi-1 and -2
locally correlated.

We now consider the maximum decoherence limit and
argue that the topological stabilizer state becomes max-
imally mixed on the subsystem Ht

G. In agreement with
the subsystem code literature, the subsystem Ht

L defines
a noiseless subsystem [55,56].

We first observe that, for a state ρ0 in the code space of
S0, we can write

N (ρ0) =
∑
g∈G

pggρg†, (28)

where the sum is over all elements of the gauge group G.
Unlike Eq. (20), the expression for the action of N on ρ0
includes the stabilizers of S0. Since ρ0 is invariant under
the elements of S0, this just adds an overall constant fac-
tor, which is absorbed into the normalization. The maximal
decoherence limit then corresponds to taking pg = 1/|G|.
We denote the channel in this limit by Nm. As we saw in
the Z2 TC example, the physics of the error-induced phase
is well captured by this limit.
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We would now like to argue that Nm acting on an arbi-
trary pure state ρ0 = |ψ〉〈ψ | in the code space of S0 creates
a maximally mixed state in the gauge subsystem. That is,
we would like to show that

Nm(ρ0) =
∑

t

1
dimHt

G
1Ht

G
⊗ ρt

L, (29)

for some state ρt
L on the logical subsystem. This follows

immediately from the fact that the gauge group gener-
ates the full matrix algebra on the gauge subsystem [55–
57]. Therefore, the channel in Eq. (28) behaves like the
depolarizing noise channel within the gauge subsystem.
Nonetheless, we find it instructive to demonstrate Eq. (29)
explicitly.

We begin by noticing that the state ρ0 = |ψ〉〈ψ | belongs
to the code space HlC, since Sloc ⊂ S0. According to
Eq. (26), this means that we can decompose |ψ〉 as

|ψ〉 =
∑

t

|ψ t〉 , |ψ t〉 ∈ Ht
lC, (30)

where |ψ t〉 is

|ψ t〉 = 1
|ST|

∑
T∈ST

t(T)−1T |ψ〉 . (31)

Given the factorization of the code space, we can further
Schmidt decompose |ψt〉 to obtain

|ψ t〉 =
∑
α

λt,α |ψ t
G,α〉 ⊗ |ψ t

L,α〉 . (32)

Here, the states |ψ t
G/L,α〉 are orthonormal for different

indices α, and
∑

α λ
2
t,α = 1.

With this notation, the action of Nm on ρ0 can be written
as

Nm(ρ0)

=
∑
t,t′

∑
α,β

λ∗
tαλt′βNm(|ψ t

G,α〉〈ψ t′
G,β |)⊗ |ψ t

L,α〉〈ψ t′
L,β | .

(33)

We have used here that, by definition, the gauge operators
act as the identity on the logical subsystem. We see that, to
understand the effects of the channel Nm, we need only to
consider its effects on |ψ t

G,α〉〈ψ t′
G,β |.

By explicit calculation, we find that Nm(|ψ t
G,α〉〈ψ t′

G,β |)
is

Nm(|ψ t
G,α〉〈ψ t′

G,β |) = 1
|G|

∑
g∈G

g |ψ t
G,α〉〈ψ t′

G,β | g†

=
∑

g̃∈G/ST

g̃ |ψ t
G,α〉〈ψ t′

G,β | g̃†
∑
T∈ST

t(T)t′(T)−1. (34)

To obtain the second line, we split the gauge operator g
into g = g̃T, and used T |ψ t

G〉 = t(T) |ψ t
G〉. Next, we use

the following identity:

∑
Ti∈ST

ti(t′i)
−1 = |ST|δt,t′ . (35)

This allows us to write

Nm(|ψ t
G,α〉〈ψ t′

G,β |) = |ST|
|G| δt,t′

∑
g̃∈G/ST

g̃ |ψ t
G,α〉〈ψ t′

G,β | g̃†.

(36)

Now, we need only to prove that

Nm(|ψ t
G,α〉〈ψ t

G,β |) = δαβ
1

dimHt
G
1Ht

G
. (37)

We prove this for t = 1. For other t, we can just replace
S with S t. For brevity, we drop the t superscript. For any
Pauli operator O in the gauge subsystem, we have

Nm(O) = 1
|G/S|

∑
g̃∈G/S

g̃Og̃† =
{

O, if O ∝ 1

0, otherwise.
(38)

This follows from the fact that G/S is isomorphic to the
Pauli algebra on the gauge subsystem. Then, for a general
operator O in the gauge subsystem, it follows that

Nm(O) = Tr O · 1
dimHG

1. (39)

Given that Tr(|ψ t
G,α〉〈ψ t

G,β |) = δαβ , we arrive at Eq. (37).
Putting this all together, we finally find that the maxi-

mally decohered state ρm is

Nm(ρ0) =
∑

t

1
dimHt

G
1Ht

G
⊗
∑
α

λ2
t,α |ψ t

L,α〉〈ψ t
L,α|

=
∑

t

1
dimHt

G
1Ht

G
⊗ ρt

L.

Physically, we have shown that after the maximal noise
channel, the gauge subsystems are left in the maximally
mixed state, but the state in the logical space Ht

L is
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unaffected. Furthermore, there is no quantum coherence
between logical subspaces with different t: one can only
form a convex sum of ρt

L’s. In a sense, ST encodes classi-
cal information. Therefore, coherent spaces are labeled by
the eigenvalues t.

We remark that when the logical subsystem is trivial
(e.g., when the model is placed on a sphere), the gauge
subsystem is the code space, and we simply find a max-
imally mixed state in the code space. The density matrix
can then be written as a stabilizer state [58]:

ρm = 1
|S|

∑
S∈S

S. (40)

C. Abelian anyon theories

To identify interesting examples of decohered topolog-
ical stabilizer states, beyond the decohered TC state in
Sec. II D, we find it valuable to introduce the language
of anyon theories. In general, topologically ordered states
in (2+1)d are characterized by anyon theories, which are
defined by abstract mathematical data consisting of a set
of anyon types, their fusion rules, F symbols, and R sym-
bols [59]. For topological Pauli-stabilizer states, however,
the anyon theories are Abelian, meaning that the data sim-
plifies greatly. To specify an Abelian anyon theory we
need (1) an Abelian group A of anyons whose product
represents the fusion of anyons, and (2) a function θ :
A → U(1) that determines the exchange statistics of the
anyons. We note that a formal definition of anyon types for
topological Pauli subsystem codes is given in Ref. [36].

The exchange statistics of the anyons can be deter-
mined by first identifying the string operators that move
the anyons around the system, using, for example, the
construction in Refs. [36,60]. The string operators can
then be used to compute the exchange statistics follow-
ing Refs. [36,61,62]. The identity element 1 ∈ A, is a
boson, so it satisfies θ(1) = 1. Furthermore, θ(a) gives a
quadratic form over the anyon group. This is to say that
θ(na) = θ(a)n

2
, for any anyon type a. The T matrix of the

anyon theory is defined as

Tab = θ(a)δab, (41)

for a, b ∈ A.
Using θ , we can also define a bilinear form B(a, b) over

A, which captures the braiding relations between anyon
types a and b:

B(a, b) = θ(ab)
θ(a)θ(b)

. (42)

An anyon theory is called “modular” if, for every anyon
type a, there exists an anyon type b such that B(a, b) �= 1.

Otherwise, the anyon theory is premodular (or nonmodu-
lar). The S matrix of the anyon theory is defined as

Sab = 1√|A|B(a, b). (43)

If the anyon theory is modular, then the S matrix is unitary.
It is proven in Ref. [36] that the anyon theory of a Pauli
topological state is always modular. For Pauli topological
subsystem codes, on the other hand, the anyon theory may
be premodular.

If an anyon theory is premodular, then there exists at
least one “transparent” anyon type a, such that B(a, b) = 1,
for every anyon type b ∈ A. The subgroup of transparent
anyons T is defined as

T = {a ∈ A | B(a, b) = 1, ∀b ∈ A}. (44)

For a modular theory, T consists of only the trivial anyon.
In general, transparent anyons can be either bosons or
fermions. We define Tb as the subgroup of the transparent
anyons that have bosonic statistics.

One can form the quotient group Amin = A/Tb. This
defines another anyon theory, which can be interpreted
as the anyon theory obtained from condensing the bosons
in T . If T = Tb, then, Amin is modular. Otherwise, Amin

takes the form Amin = C � Z(1)2 , where C is modular, �
denotes the operation of stacking two independent anyon
theories, and Z(1)2 is the anyon theory generated by an
order-2 transparent fermion (defined below).

To make the discussion more explicit, let us introduce a
family of Abelian premodular anyon theories with a single
generator. These anyon theories appear in the examples in
the next section. Following Ref. [63], the anyon theories
are denoted by Z(p)N , where ZN indicates the fusion group,
and p is an integer for odd N and a half-integer when N
is even. The group elements are denoted by [a] with a =
0, 1, . . . , N − 1 defined mod N . The basic data is given by

[a] × [b] = [a + b], (45)

θ([a]) = e
2π ip

N a2
, (46)

B([a], [b]) = e
4π ip

N ab, (47)

where addition is taken mod N . Intuitively, when p is an
integer, Z(p)N is the anyon theory generated by emp in a ZN
TC.

The transparent subgroup T can be determined from the
data above. Here, we list a few common cases:

(1) If N is odd and p ∈ Z, then the transparent subgroup
is Z(0)(p ,N ). In particular, if p is coprime with N the
theory is modular.
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(2) If N is even and p ∈ Z, the transparent subgroup
is Z2(N/2,p) generated by [N/2/(N/2, p)]. These
theories are always nonmodular.

(3) If N is even and p ∈ Z + 1
2 , then the transparent

subgroup Z(0)(N ,2p) is generated by [N/(N , 2p)].

Let us now comment on the connection between anyon the-
ories and the discussion of topological subsystem codes in
the previous sections. As shown in Ref. [36], the nonlocal
stabilizers ST on a torus (or any higher-genus surface) are
generated by the string operators of the transparent anyons
T along noncontractible cycles. Once the values of ST are
fixed, the logical operators for the quantum coherent sub-
space Ht

L are string operators of the modular part of Amin

along noncontractible cycles.
Let us also revisit the locally indistinguishable states of

the decohered topological stabilizer codes, using the lan-
guage of Abelian anyon theories. We consider the case
when the system is put on a torus. Before adding noise,
a basis for the ground-state space can be chosen to be |a〉x
where a is the anyon label, and |a〉x is the eigenstate of
Wilson loops around the y direction of the torus. That is,
for an arbitrary a, the state |a〉x satisfies

Wy(b) |a〉x = Sab

SIa
|a〉x , Wx(b) |a〉 = |a × b〉x . (48)

The coherent subspaces are eigenspaces of Wx(t) and
Wy(t) for all t ∈ T . Let us consider the Wx(t) = Wy(t) = 1
subspace. This coherent subspace, in particular, can be
obtained by decohering the following ground-state sub-
space on a torus:

span

{
1√|T |

∑
t∈T

|a × t〉x

∣∣∣∣∣ a ∈ A
}

. (49)

The basis states of the coherent space are in one-to-one cor-
respondence with elements of A/T . Thus, the dimension
of the coherent space is equal to |A/T |. When T = Tb,
within the coherent space, the action of string operators for
ã ∈ Amin that wrap around the torus is identical to that of
a pure state TO with Amin as the anyon theory.

D. Examples

1. Z2 toric code with X noise

The first example is again the Z2 TC under bit-flip
errors, but here we study the model using the language
of subsystem codes. In this case, the stabilizer group S0
is generated by the vertex Av and plaquette Bp stabilizers
of the TC. The gauge group defined with bit-flip noise is
G = 〈S0, X 〉. The group Sloc is generated by the Av . The
group ST is then generated by the string operators of X
along noncontractible loops on the dual lattice. Physically,

S are the closed string operators of the m anyon. There-
fore, the associated Abelian anyon theory is A = {1, m},
denoted as Z(0)2 using the notations introduced in Sec. III C.
The anyon theory consists only of transparent anyons (i.e.,
T = A).

We have shown in Sec. II D that, in the maximal deco-
herence limit, the density matrix becomes a diagonal clas-
sical ensemble of closed loops. On a torus, the mod-2
winding numbers of the loops around two directions are
topological invariants. Thus, we have four classical states:

ρ
wxwy
X ∝

∑
C∈Cwxwy

|C〉〈C| , wx/y = 0, 1. (50)

Here, wx/y indicates the even-odd parity of the number
of loops wrapping around x or y directions, and Cwxwy is
the corresponding set of loop configurations. These four
extremal states are precisely distinguished by the eigen-
values of the nonlocal stabilizers, as expected from the
general result. The e string operator of the TC, namely
product of Z operators along a path on the lattice, can
toggle between the four extremal points.

2. Z2 toric code with “fermionic” noise

As described in Sec. II D, bit-flip noise applied to the
TC state can be interpreted as incoherently proliferating
m anyons. Here, we consider instead an incoherent pro-
liferation of f = e × m particles. Note that since f is a
fermion, it can not be condensed coherently. However, an
incoherent proliferation is still possible.

Since the fermion is a bound state of e and m, one has
to specify the relative positions. It is useful to fix an ori-
entation, where the m is always at the plaquette p to the
“northeast” of e at the vertex v. We say that such a bound
state is a fermion at the plaquette p .

We can then define a “hopping” operator Se for each
link e.

(51)

The hopping operator Se creates, annihilates, or moves the
fermions between the plaquettes bordered by the edge e.
We consider the following channel, which incoherently
proliferates the fermions:

Nf =
∏

e

Nf ,e, Nf ,e(ρ) = 1
2
(ρ + SeρSe). (52)

For a TC state ρ0, we define ρf = Nf (ρ0). We refer to this
state as the fermion-decohered TC state.

To better understand the decohered state, we employ
the fermionization map introduced in Ref. [64]. This map
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takes the subspace satisfying AvBNE(v) = 1, where NE(v)
is the plaquette to the northeast of the vertex v, to the
fermion parity even sector of a system with physical
fermions on the plaquettes. The initial TC ground state
has no f excitations. After the channel is applied, one can
show that the density matrix in the fermionic Hilbert space
takes the following form:

ρf = 1
2Np −1

∑
{np }

′ |{np}〉〈{np}| ∝ 1 + Pf , (53)

where np denotes the fermion occupancy at the plaque-
tte p , and the sum is over configurations {np} satisfy-
ing

∑
p np = 0 mod 2. This gives the maximally mixed

state in the Pf = 1 subspace [65]. After bosonization,
the fermionic density matrix ρf is again mapped to the
fermion-decohered TC state (hence the same notation).

Interestingly, we find that ρf has many other purifica-
tions. For example, it can be purified into an Ising TO, or
any of the Kitaev’s 16-fold ways [1]. This is elaborated on
in Appendix A.

One can show that ρf is not SRE in a bosonic sys-
tem, but can have a SRE purification, if there are phys-
ical fermions in the system. It was recently suggested in
Ref. [33] that ρf represents an example of an “intrinsi-
cally mixed” TO. We argue that this is indeed the case in
Sec. IV.

Lastly, we note that the definition of the hopping oper-
ators Se is not unique. In our definition, the fermion is
assumed to be the bound state of an e anyon at a vertex
v with m at the plaquette to the northeast of v. One may
choose different conventions for the binding between e and
m and then the form of the hopping operators need to be
modified accordingly. However, we conjecture that as long
as there is a consistent choice for the definition of fermion
and hence hopping operators, the channel Nf all lead to the
same mixed-state topological phase. This is motivated by

the fact that once a binding of the e and m anyons is speci-
fied, one can perform a fermionization duality and employ
the logic in Appendix A.

3. Z2 toric code with Y noise

Now, we consider the Z2 TC in the presence of Y noise.
The gauge group is generated by the TC stabilizers and
Pauli-Y operators. The stabilizer group of the subsystem
code is generated by products of Y operators along diag-
onal paths, as shown in Fig. 4(a). This stabilizer group
clearly does not have local generators. Thus, the subsystem
code is not topological.

Moreover, the TC state with maximum Y decoherence
is not locally correlated, as defined in Sec. II. Therefore, it
falls outside of the class of mixed states considered in this
work. More specifically, the Y-decohered TC state indeed
admits a purification into a GGS, and is Rényi-1 locally
correlated, but it is not Rényi-2 locally correlated.

To see this, we consider a product of AvBNE(v) operators
along a diagonal. As shown in Fig. 4(b), this produces XX
and ZZ operators at the endpoints of the diagonal line with
Y operators in between. Since the Y operators are them-
selves gauge operators, they commute with the decohered
state and we have

(XX )i(ZZ)j ρ(ZZ)j (XX )i = ρ. (54)

Here i and j are two well-separated positions.
On the other hand, XX itself does not commute with

the stabilizer group of the decohered state, which implies
(XX )iρ(XX )j has orthogonal support as ρ. Therefore, we
have

Tr
[
(XX )iρ(XX )j ρ

] = 0, (55)

and

F
(
ρ, (XX )iρ(XX )j

) = 0. (56)

(a) (b) (c)

FIG. 4. The Y-decohered TC state and its Rényi-2 order parameters. (a) The stabilizer group of the Y-decohered TC subsystem code
is generated by products of Pauli Y operators along diagonals. (b) A product of AvBNE(v) operators along a diagonal path (dashed line)
yields XX operators at one endpoint and ZZ operators at the other, separated by a string of Y operators. (c) The Rényi-2 correlator
C(2)

(
(XX )i, (ZZ)j

)
exhibits long-range correlations for i and j along a diagonal.
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FIG. 5. Subsystems A, B, and C for CMI calculation. For any
GGS, we expect that the CMI I(A : C|B) decays faster than any
power law in the width of the annulus B. For the Y-decohered TC
state, the CMI is nonzero and does not decay with the width of
B, as argued in Appendix C.

and similarly for ZZ. Thus, the Rényi-2 and fidelity con-
nected correlator exhibit long-range correlations

C(2)
(
(XX )i, (ZZ)j

) = 1 = CF ((XX )i, (ZZ)j
)

, (57)

with i and j along a diagonal, as in Fig. 4(c).
We would also like to point out that, for the TC state

decohered by Y noise, the conditional mutual information
(CMI) I(A : C|B) for the subsystems A, B, and C depicted
in Fig. 5, is nonvanishing in the width of the annulus B.
This is noteworthy, since the CMI in this geometry is van-
ishing for short-range correlated GGSs [66]. We expect
that the CMI vanishes for any mixed state based on a sub-
system code that is topological. We compute the CMI for
the Y-decohered TC state in Appendix C.

4. ZN toric code

For another example, we can consider the ZN TC,
defined by the Hamiltonian

HTC = −
∑
v

ATC
v −

∑
p

BTC
p . (58)

The vertex term ATC
v and plaquette term BTC

p are graphi-
cally represented as

(59)

There is a Z(1)N subgroup generated by the em anyons, and
Z(−1)

N generated by eN−1m. A useful fact is that for odd N ,
the anyon theory of the ZN TC factorizes as Z(1)N � Z(−1)

N .

Suppose the noise is induced by the following short
string operators for eN−1m anyons:

(60)

Together with Av and Bp , they generate the gauge group,
whose stabilizer group is generated by

(61)

Intuitively the local generators are small loops of em
anyons. They can also be defined on noncontractible paths
to generate logical operators:

(62)

On a torus, and for even N , ST is generated by the string
operators of eN/2mN/2 along noncontractible loops.

The anyon theory associated with this topological sub-
system code is the Z(1)N theory. For odd N , the theory is
already modular. For even N , the transparent center is
Z(0)2 = {1, eN/2mN/2}.

5. Decohered Z4 toric code and the symmetry-enriched
double semion state

We now decohere the Z4 TC state using noise that pro-
liferates e2m2 bosons. To be explicit, we consider the Z4
TC state with the Krauss operators:

(63)

They are short string operators that pair create and move
e2m2 anyons. Notice that in the Z4 TC ground state, Ce
satisfies the following constraint at each vertex:

∏
v∈e

Ce = 1, (64)

i.e., it is a product ATC
v and BTC

p .
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Following the analysis in Sec. III, the stabilizer group
S of the topological subsystem code is generated by the
following operators:

(65)

ADS
v can be viewed as a small em loop and BDS

p as an e2

loop. The mixed state is uniquely determined by the sta-
bilizer group, at least when placed on a sphere—it is the
maximally mixed state in the subspace defined by ADS

v =
BDS

p = 1. Notice that (ADS
v )

2 can be written as a product of
two plaquette operators and four edge operators.

The logical operators and nonlocal stabilizers are gener-
ated by em and e3m = e2 × em anyon strings, and can be
viewed as Z(1)4 � Z(−1)

4 with the transparent bosons from
the two subtheories identified. Further coherently condens-
ing the transparent e2m2 boson would produce the double
semion (DS) theory.

Alternatively, it proves useful to think of the Z4 TC
state as gauging a Z2 0-form symmetry in the DS state.
The Z2 symmetry enriches the DS state in the following
way: both the semion s and the antisemion s′ carry “half
charge” under the Z2 symmetry. Formally, if we denote
the Z2 charge by b, which by definition is a transparent
boson, then we have the following fusion rules: s × s =
s′ × s′ = b. We now claim that the decohered Z4 TC state
can equivalently be represented as a mixture of DS states
over all possible configurations of Z2 defect lines.

To see this more explicitly, we consider the follow-
ing stabilizer Hamiltonian for the DS state introduced in
Ref. [67]:

HDS[s] = −
∑
v

ADS
v −

∑
p

BDS
p −

∑
e

seCe + h.c. (66)

We denote its ground state as |ψDS(s)〉. If all se are set to 1,
we obtain the translation-invariant DS state as the ground
state. Here, we allow {se = ±1} to vary, subject to the con-
straint given in Eq. (64). In other words, the edges with
se = −1 must form contractible closed loops. These are
the Z2 defect loops.

We now define a variant of the double-semion stabilizer
model, by introducing additional qubits on the plaquettes.
The Hamiltonian is modified as shown below:

H ′
DS = −

∑
v

ATC
v XNE(v) −

∑
p

BTC
p Xp

−
∑

e

CeZpeZqe + h.c. (67)

Here, pe and qe denote the two plaquettes adjacent to the
edge e.

This model has a global Z2 0-form symmetry, gen-
erated by

∏
p Xp . Physically, the CeZpeZqe pins the Z2

symmetry defect lines to the domain walls of the plaque-
tte spins. Notice that we have ADS

v = ATC
v BTC

NE(v) = 1 and
BDS

p = (BTC
p )2 = 1.

Fixing the eigenvalues of the Zp ’s, or equivalently
choosing a particular domain-wall configuration, the
Hamiltonian is seen to be exactly equivalent to HDS[s]
where se = ZpeZqe . Thus, the ground-state wave function
can be viewed as a coherent superposition of DS states with
varying domain configurations on the plaquettes. If the Z2
symmetry is absent, one can imagine turning on a Zee-
man field to adiabatically connect to the state that satisfies
Zp = 1 everywhere, which is just the usual DS state.

If the Z2 0-form symmetry of the model in Eq. (67) is
gauged, we obtain a model in the same phase as the Z4 TC.
Heuristically, the 0-form symmetry is gauged by replacing
the domain configurations with topological defects. This
implies that the ground states of the Z4 TC can be viewed
as a coherent superposition of (contractible) defect loops in
a DS state. By incoherently proliferating the e2m2 anyons
in the TC, the coherent superposition of defect loops is
transformed into an equal-weight mixture of defect loops:

∑
{se}

′ |ψDS(s)〉〈ψDS(s)| , (68)

where
∑′ indicates that the sum is over {se} satisfying

Eq. (64). In other words, the defect loops of the ket and
the bra are bound together, since the decohered state is
invariant under conjugation by open e2m2 string operators,
which detect the defect lines.

Now, we argue that, on a sphere or an infinite plane, the
decohered Z4 TC state can be recovered from a DS state.
To see this, we note that the ground-state wave function of
the model in Eq. (67) can be written as follows:

|ψSET〉 = 1
2Np/2

∑
{Zp }

|{Zp}〉 ⊗ |ψDS(se = ZpeZqe)〉 , (69)

where {Zp} denotes a configuration on the plaquette spins.
Thus, tracing out the plaquette spins, one finds precisely
the mixture of DS states with defect loops. Notice that
ADS
v = ATC

v BTC
NE(v) and BDS

p = (BTC
p )2 are not affected. In

other words, we have found a different purification of the
decohered Z4 TC state, whose TO is described by the DS
theory.

IV. EMERGENT 1-FORM SYMMETRIES

In this section, we discuss a general framework for ana-
lyzing the mixed-state TO of Pauli-decohered stabilizer
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states and mixed states that belong to the same phase. We
study, more specifically, the properties of the “emergent”
symmetries of the mixed states. To get started, we make
general statements about symmetries in mixed states. We
then introduce 1-form symmetries [45,68,69], clarify their
connection to anyon theories, and discuss the character-
ization of mixed-state TOs according to their emergent
1-form symmetries.

A. Strong and weak symmetries

For a pure state |ψ〉, a global symmetry is represented
by a unitary (or antiunitary) operator U, under which the
state is invariant up to a phase: U |ψ〉 = eiφ |ψ〉. We note
that, in this work, we consider only unitary symmetries. In
a local quantum system, a 0-form symmetry U acts on the
entire system. More generally, one can consider symmetry
transformations defined on proper subsystems—for exam-
ple, on closed one-dimensional paths, as described in the
next section.

To define symmetry in mixed states, we need to dis-
tinguish whether the symmetry acts nontrivially on the
environment, leading to two distinct notions of global sym-
metry [22,70–73]. If the symmetry does not act on the
environment, in other words, the system and the envi-
ronment do not exchange symmetry charges, then the
symmetry is said to be “strong.” By this definition, a mixed
state ρ with strong symmetry U can be decomposed into
a mixture of pure states all of which have the same total
charge under the symmetry. That is, we must have

Uρ = eiφρ, (70)

which can be taken as the definition of strong symmetry.
If, on the contrary, the symmetry also acts nontrivially

on the environment, then the symmetry is called “weak.”
In this case, we only have

UρU† = ρ. (71)

We note that it has been recently understood that strong and
weak symmetries play very different roles in mixed-state
SPT orders [22,24,27–30,74].

B. 1-form symmetries of gapped ground states

A modern view on TO in GGSs is to consider the sys-
tem’s emergent higher-form symmetries [68,75,76] and
the noninvertible generalizations [77,78]. Abelian topolog-
ical states in (2+1)d are characterized by emergent 1-form
symmetries, which are, intuitively, generated by loops of
anyon string operators. The TO can then be interpreted as
spontaneously broken 1-form symmetry.

For our purpose, we adopt the following working
definition of a 1-form symmetry: for a closed path γ

(which may be on the lattice or the dual lattice), we asso-
ciate a unitary operator W(γ ). In many cases, e.g., in

stabilizer models, W(γ ) is actually a finite-depth local
unitary operator supported in the neighborhood of γ . A
GGS |ψ〉 has the emergent 1-form symmetry if |ψ〉 is an
approximate eigenstate of W(γ ) for all contractible γ :

W(γ ) |ψ〉 � eiα |ψ〉 , (72)

where � means up to O(L−∞) corrections. Notice that we
do not require that the eigenvalues are 1, although this is
the case for all examples considered here.

For a given GGS, the set of 1-form symmetry operators
is naturally endowed with the structure of a group, where
the group multiplication is simply the multiplication of the
unitary operators.

We can further associate an anyon theory to a 1-form
symmetry. To do so, we first define the notion of a “break-
able” 1-form symmetry on a state |ψ〉. Here, “breakable”
is defined more precisely by considering an open path γab
connecting a and b. We let the string operator W(γab) be
the truncation of the symmetry operator supported on a
large loop containing γab. The open string operator W(γab)

is well defined up to local unitary operators near the end
points. We say the 1-form symmetry is breakable if there
exists local unitaries Ua and Ub, supported near a and
b, such that UaW(γab)Ub |ψ〉 = eiφ |ψ〉. In other words,
W(γab) creates only local excitations. Note that whether a
1-form symmetry operator is breakable depends in general
on the state |ψ〉.

The anyon theory of a 1-form symmetry W for a state
|ψ〉 is defined as W modulo the breakable symmetry oper-
ators on |ψ〉. Every GGS has a (possibly trivial) emergent
1-form symmetry group, and the associated anyon theory
is invariant throughout the phase.

While we have focused on emergent 1-form symme-
try, one can also consider microscopic (or exact) 1-form
symmetry, which are true symmetries of the Hamiltonian.
Topological subsystem codes provide many examples of
Hamiltonians with exact 1-form symmetry groups [36].

1. Anomaly of 1-form symmetry

Just as for any global symmetry, 1-form symmetries
can exhibit ’t Hooft anomalies [68,79]. For a finite 1-
form symmetry group associated to an anyon theory A, the
anomaly is fully characterized by the exchange statistics
θ(a) for a ∈ A, defined in Sec. III B for Abelian anyon the-
ories. The 1-form symmetry is nonanomalous if and only
if θ(a) = 1 for every a ∈ A. For pure states, an anoma-
lous symmetry forbids symmetry-preserving short-range
entangled states.

As an example, consider the emergent 1-form symme-
tries in the TC phase. In the original TC model, there
are two kinds of loop operators: We(γ ) the product of Z
along a direct loop, which creates and moves e particles,
and Wm(γ

∗) the product of X along a dual loop γ ∗. For
contractible loops, We(γ ) and Wm(γ

∗) are both written
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in terms of stabilizers. Thus, the ground state of the TC
model has Z2 × Z2 1-form symmetry. In fact, in this case,
the Z2 × Z2 1-form symmetry is exact as the Hamiltonian
commutes with the symmetry operators. There is a mixed
anomaly between the two Z2 subgroups (i.e., the braiding
statistics between e and m anyons).

If the TC model is tuned away from the fixed-point limit,
e.g., by adding a small magnetic field, but still remains in
the TC phase, the ground states are no longer eigenstates of
We and Wm. In fact, their expectation values decay expo-
nentially with the length of the loop. However, one can find
a new set of loop operators W̃a, which are emergent 1-form
symmetries for the deformed ground state. The string oper-
ators W̃a can be constructed by conjugating Wa’s with a
quasiadiabatic evolution operator [75]. In the generic case,
the 1-form symmetry is only emergent for ground states
and low-lying excited states.

C. 1-form symmetries of mixed states

In this section, we extend the discussion of 1-form
symmetries to mixed states. We define a strong 1-form
symmetry operator of a mixed state ρ as a looplike unitary
operator W, which satisfies Wρ = eiαρ, for some phase
factor eiα . Similarly, we say a strong 1-form symmetry
is breakable, if the open string operator W(γab) satisfies
UaW(γab)Ubρ = eiβρ for some local unitaries Ua and Ub.

Before developing a notion of an emergent strong 1-
form symmetry for mixed states, let us consider the strong
1-form symmetries of the decohered stabilizer states of
Sec. III B. As described in Sec. III B, topological subsys-
tem codes define a family of decohered stabilizer states,
with varying levels of noise. Further, as described in
Ref. [36], topological subsystem codes are characterized
by premodular Abelian anyon theories. The anyon the-
ory of the subsystem code is precisely the strong 1-form
symmetry group of the decohered state.

As a simple example, the subsystem code correspond-
ing to incoherently proliferating m anyons in a Z2 TC
state is characterized by the {1, m} anyon theory. In agree-
ment with this is the fact that the strong 1-form symmetry
of the decohered state is generated by loops of m string
operators. Note that, in this case, the 1-form symmetry
is nonanomalous, and the decohered state belongs to the
same phase as the maximally mixed state, which has no
strong symmetries. As another example, the subsystem
code corresponding to incoherently proliferating e−1m in a
ZN TC is characterized by the anyon theory Z(1)N . Regard-
less of the strength of the noise, the mixed state has a strong
1-form symmetry generated by the e−1m string operators.

Now, to move beyond mixed states derived from topo-
logical subsystem codes, we consider the effects of QLCs
on the strong 1-form symmetries of mixed states. This
leads us to a notion of emergent strong 1-form symmetries.

Suppose that ρ1 and ρ2 are mixed states that can be
connected by a QLC N21, i.e., N21(ρ1) = ρ2. If ρ2 has a
strong 1-form symmetry, with an arbitrary symmetry oper-
ator represented as W2, such that W2ρ2 = ρ2, then we have
the following chain of equalities:

1 = Tr[ρ2] = Tr[W2ρ2] = Tr[W2N21(ρ1)]. (73)

If we further purify the channel in terms of a polylog(L)-
depth local circuit V21, we obtain

1 = Tr[W2V†ρ1 ⊗ |0〉〈0| V] = Tr[VW2V†ρ1 ⊗ |0〉〈0|],
(74)

where |0〉〈0| is a many-body product state in an ancillary
Hilbert space.

This implies that ρ1 ⊗ |0〉〈0| has a strong 1-form sym-
metry represented by VW2V† [80]. Because V is a QLUC,
VW2V† remains a 1-form symmetry operator, with exactly
the same group structure and anomaly. Thus, every strong
1-form symmetry of ρ2 corresponds to one for ρ1 ⊗ |0〉〈0|.
Note that, in determining the strong 1-form symmetries
of a state, we allow ourselves to freely append ancillas.
Therefore, the strong 1-form symmetries of ρ1 ⊗ |0〉〈0|
are, by definition, the same as those of ρ1. This gives us

W2 ⊂ W1, (75)

where W1 and W2 are the strong 1-form symmetries of ρ1
and ρ2, and ⊂ denotes a subgroup. In this sense, the strong
1-form symmetry of ρ2 is emergent for ρ1.

As an example, the reasoning here can be used to define
an emergent 1-form symmetry for the decohered Z2 TC
state when the noise strength is small—in that case, one
can find an explicit QLC (the “recovery” channel) that
maps the decohered Z2 TC state back to the pure one
[12]. Thus, once purifying the channel, one finds strong
1-form symmetry operators for the decohered Z2 TC state
(tensored with ancilla in a product state).

If ρ1 and ρ2 are two-way connected by QLCs, then their
strong 1-form symmetries must be equivalent. However, it
is important to note that this does not imply that the anyon
theories of ρ1 and ρ2 are equivalent. What is missing is
the “breakability” condition. In what follows, we study the
implications of Eq. (75) for the associated anyon theories.

To get started, we make the following observation:

• If a symmetry operator W2 is unbreakable on ρ2 and
corresponds to a transparent boson, then the symmetry
VW2V† may be breakable on ρ1.

Physically, this means that a QLC is capable of turning a
trivial anyon into a (nontrivial) transparent boson. This is
exhibited by the decohered Z4 TC example in Sec. III D 5.
In that case, there is a QLC that maps the pure DS state
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to the decohered Z4 TC. The pure DS state does not have
any transparent bosons, while the decohered Z4 TC does
have one. More explicitly, the 1-form symmetry corre-
sponding to e2m2 is unbreakable for the decohered Z4 TC,
while it is breakable for the DS state. The mechanism
behind this phenomenon can be intuitively understood as
follows: the breakable 1-form symmetry operator in ρ1 ter-
minates on certain local operators, which are traced out
by the quantum channel, making the 1-form symmetry
unbreakable.

This observation implies that the anyon theories A1 and
A2, derived from W1 and W2, must satisfy

A2/B2 ⊂ A1, (76)

where ⊂ denotes a subtheory. Here, A2/B2 is the anyon
theory obtained by condensing some subgroup B2 of the
transparent bosons of A2. The subgroup B2 is necessary to
include in Eq. (76), since unbreakable 1-form symmetries
of ρ2 may correspond to breakable 1-form symmetries of
ρ1.

To gain intuition for Eq. (76), let us consider a few
examples. As a trivial example, the maximally-mixed state
can be prepared from any other mixed state by applying
a depolarizing noise channel. Since the maximally mixed
state does not have any strong 1-form symmetries, the
expression in Eq. (76) is trivially satisfied with A2 = 1.

As a second example, the fermion-deochered TC state
in Sec. III D 2 can be prepared from a pure state TC by a
QLC. The expression in Eq. (76) simply tells us that the
anyon theory of the fermion-decohered TC state (i.e., Z(1)2 )
is a subtheory of the TC anyon theory (i.e., the subtheory
generated by em).

As a final example, the decohered Z4 TC state can be
prepared from a pure DS state with a QLC. In this case,
B2 must be nontrivial for the expression to hold. B2 can be
taken to be the subgroup of transparent bosons generated
by e2m2 for the decohered Z4 TC state.

We now consider two mixed states ρ1 and ρ2 that are
two-way connected by QLCs. According to Eq. (76), there
exists subgroups of transparent bosons B1 and B2 such that

A2/B2 ⊂ A1, A1/B1 ⊂ A2, (77)

where A1 and A2 are the anyon theories of ρ1 and ρ2.
These conditions impose strong constraints on the anyon

theories A1 and A2. Let us discuss three consequences of
the conditions in Eq. (77):

(1) Let Ti be the full subgroup of transparent bosons
of Ai, and define Amin

i = Ai/Ti. We prove in
Appendix D that Eq. (77) implies that

Amin
1 = Amin

2 . (78)

This means that Amin
i is invariant under QLCs and

thus, can be used to distinguish between mixed-state
TOs.

(2) If A1 or A2 is modular, one can show that Eq. (77)
implies A1 = A2. This is a special case of a more
general theorem proven in Sec. V E.

(3) We prove in Appendix E that if A1 and A2 both have
a single generator, Eq. (77) also implies A1 = A2.

Our discussion so far leads to a partial classification of
Abelian mixed-state TOs in terms of the minimal anyon
theory Amin

i —that is, two mixed states with different min-
imal anyon theories must belong to different mixed-state
phases. This classification is consistent with the result
proven in Ref. [41], that ZM and ZN TCs belong to
different mixed-state phases when M �= N .

Another implication of our classification result is that
the fermion-decohered TC discussed in Sec. III D 2 is a
mixed-state TO distinct from any ground-state TO in a
bosonic system. Therefore, in this sense, it is an exam-
ple of an “intrinsically” mixed-state TO, as proposed in
Ref. [33]. More generally, any mixed-state TO charac-
terized by a premodular anyon theory is an intrinsically
mixed-state TO, excluding cases where the anyon theory
decomposes as C � T , for a modular theory C and a theory
of transparent bosons T .

Based on these results, we conjecture that the condi-
tions in Eq. (77) are sufficient to prove that A1 = A2, for
arbitrary Abelian premodular anyon theories. This holds
for all of the examples considered in this text, and we are
currently unaware of any counterexamples.

1. Weak 1-form symmetry

We briefly comment on the weak 1-form symmetries
of mixed states, focusing on those obtained by decoher-
ing stabilizer states with Pauli noise. For these examples,
we have WρW† = ρ, for every 1-form symmetry operator
W of the pure stabilizer state. The decohered TC state, for
example, for any amount of bit-flip noise, has weak 1-form
symmetries generated by the e and m string operators.

More generally, the weak 1-form symmetries of a
Pauli-decohered stabilizer state correspond to the “fluxes”
of a topological subsystem code, using the language of
Refs. [36,81]. Loosely speaking, the fluxes of a topolog-
ical subsystem code are created by string operators that
commute with all of the stabilizers along their length.
They may or may not commute with the gauge operators
outside of the stabilizer group. Therefore, the string oper-
ators along closed paths, in particular, commute with all
of the stabilizers. Since the maximally decohered state is
a sum of stabilizers, the closed flux string operators com-
mute with the mixed state. Hence, they yield weak 1-form
symmetries.
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We note that weak 0-form symmetries are important
to our understanding of symmetry-protected mixed states
[24,27] and strong-weak spontaneous symmetry breaking
states. Weak 0-form symmetries also feature in our con-
struction of topologically ordered mixed states in Sec. V C.
However, it is unclear whether weak 1-form symmetries
play a larger role in the classification and characterization
of mixed-state topological orders. We leave this to future
investigations.

V. MIXED STATES WITH GENERALIZED
1-FORM SYMMETRIES

We now go beyond Pauli stabilizer states and consider
mixed-state TOs built from models that support non-
Abelian anyons. In other words, they exhibit generalized,
noninvertible 1-form symmetries. As a first example, we
construct a mixed state by decohering an Ising string-net
model. The resulting mixed state is characterized by an
anyon theory that is non-Abelian and thus, falls outside of
the purview of the previous sections. We study the locally
indistinguishable states obtained by creating non-Abelian
anyons and by defining the system on a torus.

We then generalize the construction of the decohered
Ising string-net model to G-graded string-net models. Sub-
sequently, we further generalize the construction to mixed
states built by “classically gauging” the weak symmetry
of a bosonic symmetry-enriched topological (SET) order.
Finally, we give the most general construction, in which
we construct mixed states from decohering Walker-Wang
models. We conclude this section by discussing a general

FIG. 6. A configuration of the symmetry-enriched TC with a
nonzero amplitude. The symmetry-enriched TC in Refs. [84,85]
is defined on a honeycomb lattice with three basis states |1〉, |σ 〉,
and |ψ〉 on the edges and an Ising spin on each plaquette. The
ground-state wave function has nonzero amplitudes for configu-
rations for which the σ lines appear on the domain walls of the
plaquette spins, and the ψ lines either form loops or terminate on
a σ line. Note that, ignoring the plaquette spins, the edge degrees
of freedom give a string-net state for the Ising string-net state.

algebraic characterization of mixed-state TOs in terms of
premodular anyon theories and the equivalence relations
induced by QLCs. The relations between our constructions
are summarized in the diagram of Fig. 7.

A. Example: decohered Ising string-net model

We begin by briefly summarizing the relevant details of
Ising string-net models. For more complete expositions,
we recommend Refs. [82,83]. We will also give more
details for the general case in Sec. V B. String-net models
are exactly solvable, commuting-projector Hamiltonians
with topologically ordered ground states. In their most gen-
eral form, they can realize any (2+1)d TO that admits a
gapped boundary (known as a quantum double). Some of
the examples considered in the previous section, such as
the ZN TC, can be viewed as special cases of string-net
models. Below, we focus on the so-called Ising string-net
model to illustrate the more general construction of mixed
states.

1. Pure-state wave function

First, we briefly review the ground-state wave func-
tion of the Ising string-net model. For convenience, the
model is defined on a honeycomb lattice. On each edge
of the lattice there is a three-dimensional Hilbert space,
with an orthonormal basis labeled as |1〉 , |σ 〉, and |ψ〉.
They will be referred to as “string types,” and graphically
represented as

(79)

FIG. 7. Commutative diagram for the two constructions of
mixed states in Secs. V B and V C. The diagram is commu-
tative when the G SET order admits a gapped boundary and
G is nonanomalous. (a) The construction in Sec. V B can be
interpreted as starting with a nonanomalous G SET state with
gapped boundaries, such as those from Refs. [84,85], and (quan-
tum) gauging the G symmetry. We have used a dashed line,
as a reminder that this is only possible if the G symmetry is
nonanomalous. This results in the TO of a G-graded string-net
model. (b) Starting from a G-graded string-net model, we add
noise to transform coherent fluctuations of the G gradings into
incoherent fluctuations. Equivalently, the process can be viewed
as incoherent proliferation of anyons in the Rep(G) subtheory.
(c) Starting from an arbitrary SET state (which may be anoma-
lous or not admit a gapped boundary), the global symmetry can
be classically gauged to obtain a mixed state characterized by the
G symmetrization of the SET order.
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We further define an operator μz
e for each edge e, such that

μz |σ 〉 = − |σ 〉 and μz |1/ψ〉 = |1/ψ〉. μz defines a “Z2
grading” on the Hilbert space.

On each vertex where three strings meet, we impose the
following branching constraints: (1) a σ string can never
terminate on a vertex, and (2) a ψ string can terminate on
a vertex only if a σ string passes through the vertex. String
configurations that satisfy these constraints are called Ising
string-net states. For later use, for each vertex v we define
a projector Av that is 1 on states that satisfy the branch-
ing constraint on v, and 0 otherwise. The product

∏
v Av

projects to the space of string-net states. Graphically, the
string-net states have loops of σ strings and ψ strings that
either form loops or terminate on the σ lines. An exam-
ple of a string-net state in a honeycomb lattice is shown in
Fig. 6 (ignoring the degrees of freedom on the hexagons).

The ground-state wave function |�〉 is a superposi-
tion of all string-net states. For a given string-net state
X , the amplitude in the (un-normalized) wave function is
given by

〈X |�〉 = 2Nσ /2f (X ), (80)

where Nσ is the number of σ loops in X , and f (X ) is 0
or ±1. We refer the readers to Ref. [84] for the explicit
expression of f (X ).

The wave function |�〉 is the ground state of the follow-
ing Hamiltonian:

HIsing = −
∑
v

Av −
∑

p

B+
p . (81)

Here, p sums over all plaquettes, and B+
p is defined as

B±
p =1

4
(1 + Bψp ±

√
2Bσp ). (82)

For the definitions of the Bψp and Bσp operators we refer
the readers to Ref. [85]—intuitively, they fuse a ψ or σ
string into the plaquette p , respectively. For now, it suffices

to notice the following: (Bψp )2 = 1 and
(

B+
p

)2
= B+

p . The

operator Bψp does not change the Z2 grading, determined
by μz

e, but Bσp flips the Z2 grading on all six edges of the
hexagon p . Thus, the operator Bσp anticommutes with μz

e
for e ∈ ∂p .

We now give two alternative representations of the
ground state, which turn out to be useful later. We denote
a configuration of σ loops by {σ } and define a projec-
tor P({σ }), which annihilates any string-net state whose
σ loops are different from {σ }. With this, we can define

|{σ }〉 = P({σ }) |�〉 . (83)

The ground-state wave function of the Ising string-net
model can be written as

|�〉 =
∑
{σ }

|{σ }〉 . (84)

Note that, if there are no σ loops at all, then the state is just
a quantum superposition of all closedψ loops, i.e., a Z2 TC
state. The σ loops amount to inserting certain topological
defect loops into the TC.

Lastly, since the Hamiltonian is a sum of commuting
projectors, the ground-state density matrix (on a sphere)
can be written as

ρ0 = |�〉〈�| =
∏

p

B+
p

∏
v

Av. (85)

2. Decohered density matrix

We now couple the system to the following decoherence
channel:

N =
∏

e

Ne, Ne(ρ) = 1
2
(ρ + μz

eρμ
z
e). (86)

One can see that N (ρ0) takes the following form:

N (ρ0) ∝
∑
{σ }

|{σ }〉〈{σ }| . (87)

The σ loops only proliferate probabilistically in the ensem-
ble. Note that theψ lines can still fluctuate coherently if the
σ loops are fixed.

Using the representation of the ground state given in
Eq. (85), we see that, alternatively,

N (ρ0) ∝
⎛
⎝ ∑

{sp=±}
δ∏p sp ,1

∏
p

Bsp
p

⎞
⎠∏

v

Av . (88)

Physically, B−
p projects to the state with a ψψ̄ anyon in

the plaquette p . This excitation can be measured by the Bσp
operator, due to the following relation:

Bσp B±
p = ±

√
2B±

p , Bψp B±
p =B±

p . (89)

Assuming that the model is placed on a sphere, then there
can only be an even number ofψψ̄ anyons. In other words,
the state with an odd number of ψψ̄’s must be 0. Thus the
δ∏p sp ,1 factor in the sum can be dropped, and we find

N (ρ0) ∝
∏

p

1 + Bψp
4

∏
v

Av . (90)
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3. Purification to the SET state

We now show that the decohered doubled Ising mixed
state defined in Eq. (87) can be purified into a symmetry-
enriched Z2 TC state, where the Z2 symmetry permutes e
and m anyons, at least when the underlying manifold is a
sphere.

First, we review the symmetry-enriched TC state, which
can be constructed using a variation of the string-net model
as described in Refs. [84,85]. Starting from the Ising
string-net model, we add Ising spins to each hexagon,
whose Pauli operators are denoted by τα , for α = x, y, z.
Then we impose the constraint that the Z2 grading μz

e on
an edge e must be equal to τ z

pτ
z
q , where p and q are the

two adjacent hexagons. Namely, the σ loops are bound to
domain walls of τ spins (see Fig. 6 for an illustration). The
resulting model has a global Z2 symmetry generated by∏

p τ
x
p .

Within the space of string-net states, the Hamiltonian for
the Z2 TC state takes the following form:

HSET = −
∑

p

1
4
(B1

p + Bψp + τ x
p Bσp )−

∑
e

Pe, (91)

where the edge projector is Pe = 1
2 (1 + τ z

pe
μz

eτ
z
qe
). The

ground-state density matrix is given by

ρSET =
∏

p

1 + Bψp + τ x
p Bσp

4

∏
v

Av
∏

e

Pe. (92)

Alternatively, the SET state is

|�SET〉 =
∑
{τ z}

|{τ z}〉 ⊗ |{∂τ }〉 . (93)

Here ∂τ denotes the domain-wall configuration of the pla-
quette spins. The ground state is in the same phase as the
Z2 TC, without imposing the Z2 0-form symmetry [85].
This can be seen by simply polarizing the plaquette spins,
which results in coherent fluctuation ψ lines without any
σ lines. We note that the Z2 SET order is related to the
doubled Ising TO by gauging the Z2 symmetry.

To see that the state |�SET〉 is a purification of the mixed
state ρ in Eq. (87), we just need to trace out the plaquette
spins. This gives us

ρ ∝
∑
{σ }

|{σ }〉〈{σ }| . (94)

Here, the sum is over all contractible σ loop configura-
tions. On a sphere, this is identical to decohered doubled
Ising state.

4. Anyons and string operators

For the Ising string-net model, there are nine anyon
types labeled by ab̄ where a, b ∈ {1, σ ,ψ}. For brevity, we
write a1̄ as just a, and similarly 1ā as just ā. Furthermore,
we write the trivial anyon as I = 11̄. These anyons are cre-
ated and moved by string operators Wab̄(γ ), where γ is
a path on the lattice. When γ is closed, the string oper-
ator keeps the ground state invariant. When γ is open,
Wab̄(γ ) |�〉 has two excitations created at the end points
of γ , and away from the end points the state is locally
indistinguishable from |�〉.

We focus on those string operators that act “diagonally”
in the basis |{σ }〉. More precisely, the closed string opera-
tors keep each of the |{σ }〉 states invariant (up to an overall
factor). Only the following anyon types satisfy this require-
ment: I ,ψ , ψ̄ ,ψψ̄ , and σ σ̄ . These string operators share a
common feature, that is, they do not change the Z2 grading
on the edges, thus remain well defined in the presence of
strong decoherence.

The ψψ̄ string is most straightforward to write down.
Choose a path γ on the dual lattice, then

Wψψ̄(γ ) =
∏
e⊥γ

μz
e. (95)

Here e ⊥ γ means that the edge e intersects γ . Note that
here γ does not have to be closed. For the density matrix
ρ, it is easy to see that

Wψψ̄(γ )ρWψψ̄(γ ) = ρ, (96)

for any closed or open path γ . This is consistent with
the picture that ψψ̄ has proliferated incoherently, there-
fore Wψψ̄ does not create excitations. However, note that
in contrast to coherent condensation, ψψ̄ is not identi-
fied with the trivial anyon. In other words, Wψψ̄ is not
“strongly” breakable.

To write down the other string operators, especially the
one for σ σ̄ , we need to introduce the following “local”
graphical representation for string operators [82]. A string
operator Wa is represented by a directed string acting along
an open or closed path on the lattice. Graphically, we draw
a string lying on top of the graph state to represent the
string operator. Its action on a given basis state is defined
using the following rule to resolve each overcrossing:

(97)

On the left-hand side, a labels the anyon of the string
operator, and i labels the string type on the edge of the lat-
tice. On the right-hand side, we have introduced artificial
strings that are to be “fused” into the lattice (see Ref. [82]).
In other words, once all crossings are resolved, the string
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diagrams can then be reduced to a superposition of string-
net states using the diagrammatic rules of the Ising fusion
category.

In this representation, the ψ /ψ̄ strings are given by

(98)

(99)

(100)

In these diagrams, the string operator on the left-hand side
has positive slope, while the edge of the lattice has negative
slope. Note that ψ and ψ̄ differ by a ψψ̄ string. So when
conjugating the density matrix, ψ and ψ̄ have identical
effect, even though they are distinct string operators.

Now we turn to the string operator for the non-Abelian
anyon σ σ̄ :

(101)

(102)

(103)

A few remarks are in order. First, the string operator does
not affect the σ loop configurations. It only changes the
state of the ψ lines within a “sector” of a given configura-
tion of σ loops. This is necessary in order for the string
operator to act nicely on the density matrix. Second, a
noticeable feature of the rules is that if we ignore the dia-
gram for crossing on σ edge, the rules to resolve crossings
essentially decompose into two sets: one is that we use
only the first diagram on the right-hand side, which will
be refereed to as the m-type diagram, and the other is to
use the second diagram, referred to as the e-type diagram.
The types of diagrams are interchanged whenever there is
a σ string.

Having defined the string operators, we note that they
satisfy the following algebra when acting on the ground
state or the mixed state:

Wγ (a)Wγ (b) =
∑

c

N c
abWγ (c). (104)

Here N c
ab is the fusion rule of anyons: namely, fusing a and

b can produce a c anyon if N c
ab �= 0. The most important

fusion rules is

σ σ̄ × σ σ̄ = I + ψ + ψ̄ + ψψ̄ . (105)

This means that the quantum dimension of σ σ̄ is 2. The
string operators considered here keep fixed σ line con-
figurations |{σ }〉 invariant. Since the ground state |�〉 is
invariant under closed string operators up to an overall fac-
tor, the same must be true for |{σ }〉 and the proportionality
constant is independent of {σ }. We normalize them so that

Wγ (a) |{σ }〉 = da |{σ }〉 , (106)

where da is the quantum dimension of the anyon a. It then
follows that

Wγ (a)ρ = daρ. (107)

These string operators can thus be viewed as generaliza-
tions of 1-form symmetry to non-Abelian TOs [86]. The
anyon theory formed by I ,ψ , ψ̄ ,ψψ̄ , and σ σ̄ can still be
endowed with the structure of fusion and braiding inher-
ited from the parent doubled Ising theory, thus forming
a braided fusion category. The only difference is that the
braiding is not modular. In particular, ψψ̄ braids triv-
ially with every other anyon. This is consistent with the
ψψ̄ boson being incoherently proliferated, but not coher-
ently proliferated (or “condensed”). Such a braided fusion
category without modularity is a premodular category.

5. Non-Abelian local indistinguishability

In the pure state, when applying Wa(γ ) along an open
path γ to |�〉, a pair of anyons a and ā are created at
the end points of the path γ . We refer to the anyons as
excitations even though the Hamiltonian is not necessary.
The state Wa(γ ) |�〉 is locally indistinguishable from |�〉
except at the end points of γ . Because of the fusion rule,
σ σ̄ is a non-Abelian anyon with quantum dimension 2.
This implies that the space of locally indistinguishable
states with four σ σ̄ anyons is four dimensional, with a
basis labeled by the fusion channels of any two of the
anyons. In other words, the four σ σ̄ anyons encode two
qubits.

Let us study this space in more detail. For definiteness,
we label the four σ σ̄ anyons as 1, 2, 3, 4. We denote by
Vij (a) the open string operator of a connecting ith and
j th σ σ̄ . One can label the basis for the four-dimensional
space by the eigenvalues of the string operators V12(ψ) and
V12(ψ̄). The conjugate operators are V13(ψ) and V13(ψ̄).
See Fig. 8 for an illustration of the string operators. The
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FIG. 8. The string operators V12(ψ) and V13(ψ) for four σ σ̄
anyons at points 1, 2, 3, and 4. The string operators V12(ψ̄) and
V12(ψ̄) are analogous.

logical Pauli operators can be defined as

X1 = V12(ψ), X2 = V12(ψ̄),

Z1 = V13(ψ), Z2 = V13(ψ̄).
(108)

The coherent subspace should have a fixed eigenvalue
under any nonlocal stabilizers, which include Vij (ψψ̄). To
illustrate, let us assume that Vij (ψψ̄) = 1. Observe that

V12(ψψ̄) = V12(ψ)V12(ψ̄) = X1X2,

V13(ψψ̄) = V13(ψ)V13(ψ̄) = Z1Z2.
(109)

Thus, the coherent subspace satisfies the constraints
X1X2 = 1 and Z1Z2 = 1, which is one-dimensional space.
In other words, the non-Abelian degeneracy becomes clas-
sical: the four-dimensional Hilbert space is decohered into
four classical states (i.e., isolated extremal points).

6. Local indistinguishability on a torus

If the Ising string-net model is defined on a torus, then
there are nine locally indistinguishable ground states. A
basis for the ground-state space is given by {|a〉}, where
a ∈ {1,ψ , σ } × {1, ψ̄ , σ̄ }. We choose the states |a〉 to be
eigenstates of the closed string operators Wy(b) along the
noncontractible path in the y direction. More specifically,
we can choose the states such that

Wy(b) |a〉 = Sab

SIa
|a〉 , Wx(b) |a〉 =

∑
c

N c
ab |c〉 , (110)

where Wx(b) is the string operator wrapped around the
noncontractible path in the x direction.

Before adding noise to the Ising string-net model, it is
instructive to first consider coherently condensing the ψψ̄
anyons. The effect of condensation is that the ground states
are projected onto the mutual +1 eigenspace of the ψψ̄
string operators, reflecting the fact that the ψψ̄ anyons
can be freely created and annihilated. Note that, accord-
ing to Eq. (110), the ground states |a〉 labeled by anyons
that have nontrivial braiding relations with ψψ̄ are anni-
hilated by the projector. Writing the image of the ground

state |a〉 under the projection as |a〉ψψ̄ , we are left with the
following three nontrivial states:

|I〉ψψ̄ , |σ σ̄ 〉ψψ̄ , |ψ〉ψψ̄ . (111)

Here, the states |ψψ̄〉ψψ̄ and |ψ̄〉ψψ̄ have become identi-
fied with |I〉ψψ̄ and |ψ〉ψψ̄ , respectively.

One might naively conclude that the ground-state sub-
space is three dimensional. However, there is a fourth basis
state, which can be understood as follows. Because of
the non-Abelian fusion rule σ σ̄ × ψψ̄ = σ σ̄ , it is possi-
ble to create an excited state on the torus with a single
ψψ̄ , as long as there is a σ σ̄ anyon flux threading the
torus. We refer to this state as |σ σ̄ (ψψ̄)〉. After condensa-
tion, this state is locally indistinguishable from the states
in Eq. (111), which have an even parity of ψψ̄ anyons.
Thus, the ground-state space becomes four dimensional.
Note that this agrees with the fact that condensing ψψ̄ pro-
duces a model with the same TO as the Z2 TC. In fact, we
can make the following identifications:

|I〉ψψ̄ ∼ |1〉TC , (112)

|ψ〉ψψ̄ ∼ |ψ〉TC , (113)

|σ σ̄ 〉ψψ̄ ∼ 1√
2
(|e〉TC + |m〉TC), (114)

|σ σ̄ (ψψ̄)〉 ∼ 1√
2
(|e〉TC − |m〉TC). (115)

Here |a〉TC denotes the Z2 TC ground states [87].
We now study the locally indistinguishable states

obtained by decohering the Ising string-net model.
Given any ground state ρ = |�〉〈�|, we apply the noise

channel N in Eq. (86) to obtain the mixed state N (ρ).
Since the noise incoherently proliferates ψψ̄ anyons, the
mixed state is invariant under conjugation by the string
operators Wx(ψψ̄) and Wy(ψψ̄):

N (ρ) = Wx(ψψ̄)N (ρ)Wx(ψψ̄),

N (ρ) = Wy(ψψ̄)N (ρ)Wy(ψψ̄).
(116)

This means that the state N (ρ) preserves the Wx(ψψ̄)

and Wy(ψψ̄) eigenspaces. Thus, it is block diagonalized
in the eigenbasis of Wx(ψψ̄) and Wy(ψψ̄). Therefore, the
coherent subspaces are labeled by the eigenvalues of the
ψψ̄ string operators. Drawing analogy to the examples in
Sec. III, the string operators Wx(ψψ̄) and Wy(ψψ̄) play
the same role as the nonlocal stabilizers of the subsystem
code.

Each block of N (ρ) can be expressed as a mixture of
states, each of which is obtained by decohering ground
states within an eigenspace of Wx(ψψ̄) and Wy(ψψ̄). In
other words, under decoherence, the eigenspaces of these
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string operators yield extremal points of the manifold of
locally indistinguishable states. Therefore, there is a con-
tinuum of extremal points, with connected components
labeled by the eigenvalues of Wx(ψψ̄) and Wy(ψψ̄). To
make the discussion more explicit, the eigenspace with
Wx(ψψ̄) = Wy(ψψ̄) = 1 is given by

• Wx(ψψ̄) = 1, Wy(ψψ̄) = 1:

span
{

1√
2
(|I〉 + |ψψ̄〉), |σ σ̄ 〉 ,

1√
2
(|ψ〉 + |ψ̄〉)

}
.

(117)

Wx
ψψ̄

and Wy
ψψ̄

play the same role as the nonlocal
stabilizers.

One might notice that the conclusion so far, is very
similar to the case of coherently condensing ψψ̄ . It is
thus natural to ask whether the state |σ σ̄ (ψψ̄)〉 with a
single ψψ̄ plays any role here. Intuitively, since the
ψψ̄ anyons have been incoherently proliferated, at p =
1/2 one can not locally detect whether there is a ψψ̄
anyon. Therefore, we have an exponentially large num-
ber of locally-indistinguishable states. However, this phe-
nomenon already shows up in the much simpler decohered
TC example as discussed in Sec. II D, and only happens
at p = 1/2. Therefore, we do not include the state in the
locally indistinguishable space.

For completeness, we list the coherent subspaces for the
other eigenvalues of Wx(ψψ̄) and Wy(ψψ̄).

• Wx(ψψ̄) = −1, Wy(ψψ̄) = 1:

span
{

1√
2
(|I〉 − |ψψ̄〉), 1√

2
(|ψ〉 − |ψ̄〉)

}
(118)

• Wx(ψψ̄) = 1, Wy(ψψ̄) = −1:

span
{

1√
2
(|σ 〉 + |σψ̄〉), 1√

2
(|σ̄ 〉 + |ψσ̄ 〉)

}
(119)

• Wx(ψψ̄) = −1, Wy(ψψ̄) = −1:

span
{

1√
2
(|σ 〉 − |σψ̄〉), 1√

2
(|σ̄ 〉 − |ψσ̄ 〉)

}
. (120)

Notice that each of these subspaces is two dimensional.
Intuitively, in the pure-state case, these correspond to
inserting Z2 defect lines along noncontractible paths in the
Z2 TC.

7. Modular transformations on torus

For ground-state TOs defined on a torus, the locally
indistinguishable ground states transform nontrivially

under the modular transformations of the torus. The uni-
versal part of the transformation, known as the modular
data, is related to the braiding statistics of the anyons. In
a lattice model, the modular transformations can be imple-
mented by coordinate transformations [88]. For example,
the S transformation corresponds to a π/2 rotation, which
swaps the x and y axes, and the T transformation can be
implemented by a shear deformation, or a Dehn twist.
The modular matrices can then be found by computing
the matrix representations of the corresponding coordinate
transformations in the ground-state subspace and removing
nonuniversal contributions.

It is natural to ask how the modular transformations act
on the locally indistinguishable states in mixed-state TOs,
such as the decohered doubled Ising TO. To this end, we
study the expectation values of the modular transforma-
tions on states inside the coherent space. Here we consider
both ordinary linear-in-ρ expectation value, as well as the
nonlinear expectation values. In both cases, we find that up
to a normalization factor, the expectation values are equal
to the pure-state expectation values, up to overall normal-
ization factors. Details of the calculations can be found in
Appendix F.

In the coherent space defined in Eq. (117), we find that
the S and T transformations are represented by

S = 1
2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠ , T =

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ .

(121)

Curiously, these modular matrices do not correspond to
any anyon theory: the S matrix is identical to that of a
(chiral) Ising TO, but the T matrix differs in the second
diagonal entry from any of the modular anyon theories
with the same S matrix.

B. G-graded string-net models

We now discuss generalizations of the construction of
the decohered doubled Ising state in the previous section.
We begin by further introducing details about string-net
models. For a general string-net model, the input data is a
unitary fusion category C [89]. On each edge of the lat-
tice, one has a local Hilbert space with an orthonormal
basis labeled by simple objects (also referred to as “string
types”) of C. Each vertex of the lattice corresponds to a
fusion of the three strings on the edges emanating from the
vertex. A string-net state is a basis state (i.e., a configura-
tion of string labels on the edges) that satisfies the fusion
rules of C at all vertices.

The commuting-projector Hamiltonian is given by

H = −
∑
v

Av −
∑

p

Bp , (122)
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which is a generalization of Eq. (81). Here Av is a vertex
projector that enforces the fusion rule at each vertex v. The
plaquette term Bp takes the following form:

Bp = 1
D2

∑
a

daBa
p , (123)

where Ba
p pictorially fuses a loop of a string type to a pla-

quette p . Furthermore, da is the quantum dimension of a
and D is the total quantum dimension. For details, we refer
to Ref. [83].

The ground-state wave function of the string-net model
is a certain coherent superposition of all string-net states
that satisfies Bp = 1 (and Ba

p = da). The relative ampli-
tudes of the string-net states are determined by a set of
local rules, which involve further categorical data (e.g., F
symbols) of C. The TO in the ground state is described by
the so-called Drinfeld center Z(C).

We can further assume that the input category is G
graded, where G is taken to be a finite group. A G-graded
fusion category C has the following decomposition:

C =
⊕
g∈G

Cg, (124)

such that Cg × Cg ⊂ Cgh. In other words, fusion rules in C
respect the G grading:

ag × bh =
∑

cgh∈Cgh

N
cgh
agbh

cgh. (125)

We say that C is a G extension of C1, the identity
component.

A particularly useful fact is that the TO Z(C) can be
obtained from Z(C1) by gauging a G symmetry. This
means that Z(C) contains a subcategory of (possibly non-
Abelian) bosons isomorphic to Rep(G), the category of
finite-dimensional linear representations of G. Physically,
Rep(G) describes the G charges of the gauge theory. Con-
densing Rep(G) in Z(C) again yields Z(C1). Based on this
relation, Refs. [84,85] constructed exactly solvable mod-
els for SET phases whose underlying topological order is
given by Z(C1), and such that gauging the G symmetry
yields the TO Z(C).

As an example, the Ising fusion category is Z2 = {1, g}
graded, with C1 = {1,ψ} and Cg = {σ }. The Drinfeld cen-
ter Z(C) is the doubled Ising TO, which is related to the
Z2 TC [the Drinfeld center Z(C1)], by gauging the Z2
symmetry that permutes the e and m anyons.

We now use the G-graded string-net models to produce
examples of mixed states with mixed-state TO, similar
to the construction with the Ising string-net model. We
start from the ground state ρ0 = |�〉〈�| of the string-net
model for C. Because of the G-graded structure of C, the

G-grading labels on the edges should form a G-defect
network. For a given G-defect network {g}, we define a
projector P({g}), and let

|�{g}〉 = P({g}) |�〉 . (126)

The fixed-point density matrix is given by

ρG ∝
∑
{g}

|�{g}〉〈�{g}| . (127)

For the Ising fusion category, the projector P({g}) is a pro-
jector onto a fixed configuration of σ loops, and the state
ρG is a mixture of these configurations.

The mixed state ρG can be obtained from ρ0 using the
QLC N defined below—thus, ρG has a purification into a
GGS. The QLC N is defined as

N =
∏

e

Ne, Ne(ρ) = 1
|G|

∑
g∈G

Tg
eρTg

e . (128)

Here, the operator Tg (suppressing the edge label) is
given by

Tg |ah〉 = δg,h |ah〉 . (129)

The string-net ground state has the following density
matrix:

ρ0 =
∏
v

Av
∏

p

Bp . (130)

After applying the channel, it becomes

N (ρ) ∝
∏
v

Av
∏

p

⎛
⎝∑

a∈C1

daBa
p

⎞
⎠ , (131)

which is an equivalent representation of ρG.
Physically, as will be explained in more details later in

Sec. V C, these Tg operators create gauge charges, which
are labeled by irreducible representations of G. ρG is thus
obtained from ρ0 by incoherently proliferating the gauge
charges. Note that, when G is a non-Abelian group, the
gauge charges may be non-Abelian.

We also note that, in the special case when the input
category is just the group algebra VecG (i.e., Cg = {g}),
the string-net model is equivalent to the Kitaev’s quan-
tum double model [90]. In this case, the density matrix in
Eq. (127) describes a classical ensemble of G gauge fields,
i.e., a classical G gauge theory [91]. We use this obser-
vation in the next section to generalize the construction
beyond G-graded string-net models.

We now discuss another way to prepare the state ρG,
generalizing the observations about the decohered doubled
Ising model in Sec. V A.
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In particular, we show that ρG can always be purified
into a symmetry-enriched Z(C1) state, meaning that ρG can
be prepared by tracing out certain degrees of freedom in
the SET state. Intuitively, the state |�{g}〉 can be viewed
as the ground state of the C1 string-net model but with
insertions of topological defects. ρG is then a classical mix-
ture of ground states with defects, similar to the decohered
doubled Ising state in Sec. V A.

To see the purifications explicitly, we follow Refs. [84,
85] and begin by introducing plaquette G spins with an
orthonormal basis |g〉, for g ∈ G. The string-net Hamil-
tonian is then modified as follows. For each edge, we
introduce a projector that aligns the G grading of the edge
with the domain wall of the adjacent plaquette spins. The
plaquette term is also modified to

Bp = 1
D2

∑
ag∈C

dagLg
pBag

p = 1
|G|

∑
g

Lg
pBg

p , (132)

where Lg
p acts as left multiplication: Lg

p |gp〉 = |ggp〉. We
have also defined

Bg
p = 1

D2
1

∑
ag∈Cg

dagBag
p . (133)

The operator Bp fluctuates the plaquette spins and changes
the grading on the edges to abide by the edge projectors.
We note that the operators Bg

p obey the following relations:

Bg
pBh

p = Bgh
p ,

Bg
p = (Bg

p)
†

[Bg
p , Bh

p ′] = 0, for p �= p ′,

(134)

with g defined as

ḡ ≡ g−1. (135)

These properties of Bg
p essentially follow from the prop-

erties of plaquette operators of string-net models, proven
in Appendix D of Ref. [83]. The Hamiltonian is invariant
under Ug = ∏

p Rg
p , where Rg

p |gp〉 = |gpg〉.
When the system is defined on a sphere, the ground state

wave function can be written as

|�SET〉 = 1√|G|
∑
{gp }

|{gp}〉 ⊗ |�{∂gp }〉 , (136)

where |�{g}〉 is defined in Eq. (126), and {∂gp} refers to
the G defects defined by the {gp} domain walls. After trac-
ing out the plaquette spins, we are left with the state ρG.
Therefore, |�SET〉 is a purification of ρG, as claimed.

The fact that the mixed state ρG can be purified into
an SET state suggests a potential generalization of the

construction. In particular, we can build an analog of ρG
starting from a SET mixed state, as opposed to a pure
state. This allows for additional possibilities, due to the
fact that mixed states can be enriched by weak symme-
tries, which do not suffer from t’ Hooft anomalies [24]. As
a consequence, there are SET mixed states with anomalous
G symmetries that do not have any pure-state counterpart
with an onsite G symmetry. In the next section, we con-
struct mixed-state TOs from G SET states, which may
have an t’ Hooft anomaly, by “classically gauging” the
symmetry.

C. Classically gauging SET orders

It has been well established by now that gauging (gen-
eralized) global symmetries is a powerful tool for relating
certain pure-state TOs to one another. For example, gaug-
ing a finite 0-form symmetry in an SPT state gives a
topological gauge theory, while gauging a finite 0-form
symmetry in an SET state leads to a new TO with a gauge
structure [92,93]. Here, we interpret the decohered string-
net states discussed in the previous section in terms of
“classically gauging” weak symmetries. We then argue
that this procedure can be applied to more general SET
states beyond the string-net constructions, e.g., chiral TOs.
We summarize the abstract classification of SET states in
Sec. V C 3.

First, we describe what we mean by classical gaug-
ing at a conceptual level. To draw a comparison, we start
by reviewing the standard (quantum mechanical) gauging.
Suppose we have a pure many-body state |ψ〉, invariant
under a (strong) finite-group symmetry G. We additionally
assume that the symmetry is implemented by finite-depth
local-unitary circuits. The first step in gauging is to couple
the system to background gauge fields of the G symme-
try. In other words, symmetry defects associated with a
flat background gauge field are inserted by acting with the
symmetry in a (generally disconnected) region R and flip-
ping the gauge fields on the boundary of R. Thus, for each
background gauge field, schematically denoted by A, we
have a state |ψ(A)〉 [94].

Next, in gauging the symmetry of the pure many-body
state, one forms a coherent superposition of the states with
defects, summing over all possible defect configurations:

|ψG〉 ∝
∑

A

eiα(A) |ψ(A)〉 . (137)

Here, the weight eiα(A) is a phase factor that depends locally
on A, known as the “local counterterm” in the field theory
literature. In order for this superposition to make sense as a
gauge-invariant state, eiα(A) |ψ(A)〉 must be single-valued
over the space of A. If this can not be achieved with any
choice of the local counterterm α(A), then we say there
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is an obstruction to gauging. In other words, the symme-
try has an ’t Hooft anomaly. This step is equivalent to
imposing Gauss’s law strongly.

Now, we modify this procedure to define how to clas-
sically gauge a weak symmetry group G of a mixed state
ρ. The first step of the procedure remains essentially the
same: for each background gauge field A (or equivalently,
insertion of symmetry defects), one can canonically define
a state ρ(A). The next step is now considerably more
straightforward: we simply form a classical mixture

ρG ∝
∑

A

ρ(A). (138)

Notice that there is no issue with anomalous phase factors
in this case, since Gauss’s laws are only imposed weakly.
That is, the mixed state is only required to be invariant
under the conjugation by local gauge transformations.

1. Classical gauging in string-net states

Let us spell out classical gauging more concretely by
reproducing the mixed state ρG from the previous section,
this time through classical gauging. We start with a weak
SET state ρwSET derived from the SET state in Eq. (136):

ρwSET ∝
∑
{gp }

|{gp}〉〈{gp}| ⊗ ρSN({∂gp}), (139)

where ρSN({∂gp}) is the C1 string-net state with defects

ρSN({∂gp}) = |�{∂gp }〉〈�{∂gp }| . (140)

For notations in these expressions we refer the readers to
discussions around Eq. (136). Note that the weak SET state
ρwSET is obtained from |�SET〉 in Eq. (136) by dephasing
the G spins. This reduces the strong G symmetry to a weak
G symmetry [95].

Now, we follow the steps above to classically gauge
the weak G symmetry. The first step is to add gauge
fields, which is accomplished by adding a G spin to each
edge of the lattice [96]. We then insert a configuration of
topological defects corresponding to {hp} to obtain

ρwSET({hp}) ∝∑
{gp }

|{hpgp}〉〈{hpgp}| ⊗ ρSN({∂gp})⊗ ρGF({∂hp}),

(141)

where ρGF({∂hp}) = |{∂hp}〉〈{∂hp}| denotes the state on
the gauge field degrees of freedom.

The last step is to form a classical mixture of the states
ρwSET({hp}) over all of the topological defect configura-
tions. The classically gauged state is

∑
{hp }

∑
{gp }

|{hpgp}〉〈{hpgp}| ⊗ ρSN({∂gp})⊗ ρGF({∂hp}).

(142)

Notice that this classical mixture is weakly invariant under
local gauge transformations. It can be further simplified by
copying the G grading of the string-net state to the gauge
field degrees of freedom and redefining the variables.
Doing so, we arrive at

∑
{kp }

|{kp}〉〈{kp}| ⊗ ρGF({∂kp})⊗
∑
{gp }

ρSN({∂gp}). (143)

Finally, we trace out both the G spins on the plaquettes and
the gauge fields to find

ρG ∝
∑
{gp }

ρSN({∂gp}). (144)

Therefore, we have constructed ρG by classically gaug-
ing a weak SET state. In this case, the result is actually
equivalent to tracing out the plaquette spins directly. We
also note that it is straightforward to generalize ρG to
arbitrary closed surfaces, where the gauge fields may be
topologically nontrivial.

Let us make the strong 1-form symmetry of ρG explicit,
from the perspective of classical gauging. First, we show
that ρG has Rep(G) as a generalized 1-form symmetry.
Intuitively, this stems from the proliferation of closed G
defects. More precisely, we define the string operators for
the Rep(G) subtheory as follows. Denote by ge the G grad-
ing of the (oriented) edge e. For a closed, oriented path
γ ∗ on the dual lattice starting at a plaquette p0, following
Ref. [90], we define

Wh(γ
∗) |{ag}〉 = δP

∏
e∈γ ∗ ge,h |{ag}〉 . (145)

Here, the “path-ordered” product P∏e∈γ ∗ means that the
ge’s are multiplied in the order of the edges along the ori-
ented path starting at p0. One can also think of Wh(γ

∗) as
the generalization of a Wilson loop in a G lattice gauge
theory. For G = Z2 in the Ising string-net case, this is the
Wψψ̄ operator defined in Eq. (95). Since the G network in
each allowed string-net state is closed, we have

Wh(γ
∗)ρG =

{
ρG, if h = 1
0, otherwise.

(146)

Naively, these string operators are labeled by group ele-
ments, but similar to lattice gauge theory, they should be
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organized into operators labeled by irreps π ∈ Rep(G). For
one, this removes the dependence on a choice of base point
for the path-ordered product. Explicitly, we write the string
operator on a closed path as

Wπ(γ
∗) =

∑
h∈G

χ∗
π(h)Wh(γ

∗), (147)

where χπ(h) is the character of the representation. From
Eq. (146), it follows that

Wπ(γ
∗)ρG = χπ(1)ρG = dimπ · ρG. (148)

We can also define a string operator along an open path
γ ∗

pp ′ from a plaquette p to p ′. Generalizing Eq. (147), we
define a set of open string operators as follows [97]:

Wα,α′
π (γ ∗

pp ′) =
∑
h∈G

π−1(h)αα′Wh(γ
∗
pp ′). (149)

Here, Wh(γ
∗
pp ′) is the straightforward generalization of

Eq. (145) to the open path γ ∗
pp ′ , where the product is taken

along the path from p to p ′. α,α′ = 1, . . . , dimπ label an
orthonormal basis for the irrep, and π denotes a unitary
matrix representation with a matrix element π(h)αα′ .

It is instructive to note that, if γ ∗
pp ′ connects neighbor-

ing plaquettes, then the operator Wh(γ
∗
pp ′) is precisely Th

e
in Eq. (129), for the edge e bordering the two plaquettes.
Acting on a string-net ground state, Wα,α′

π (γ ∗
pp ′) creates a

pair of anyons carrying gauge charges π and π∗, and α,α′
represent local degrees of freedom.

We expect that the Rep(G) anyons have been incoher-
ently proliferated in ρG. To this point, we observe that ρG
satisfies

∑
α,α′

Wα,α′
π (γ ∗

pp ′)ρG[Wα,α′
π (γ ∗

pp ′)]† = dimπ · ρG. (150)

This can be derived as follows. From the definition of
Wα,α′
π (γ ∗

pp ′), we have (omitting γ ∗
pp ′ for brevity):

∑
α,α′

Wα,α′
π ρG(Wα,α′

π )†

=
∑
α,α′

∑
h,h′

π−1(h)αα′π−1(h′)∗αα′WhρGWh′ . (151)

Since ρG is a convex sum of states with G defects, and
Wh(γ

∗) is a projector that enforces the product of all G

lines crossing γ ∗
pp ′ to be h, this reduces to

∑
α,α′

∑
h

|π−1(h)αα′ |2WhρGWh. (152)

Then, the fact that the irrep is unitary gives us
∑
α,α′

|παα′(h)|2 = dimπ . (153)

Plugging this into Eq. (152), we find
∑
α,α′

Wα,α′
π ρG(Wα,α′

π )† = dimπ
∑

h

WhρGWh

= dimπ · ρG. (154)

To gain intuition for this expression, note that, when π
is one dimensional, α and α′ can be suppressed, so Wπ

becomes a unitary operator. In this case, Eq. (150) reduces
to Wπ(γ

∗
pp ′)ρGW†

π(γ
∗
pp ′) = ρG, which describes the inco-

herent proliferation of the Abelian anyon π . We thus
propose that Eq. (150) describes incoherent proliferation
of (possibly non-Abelian) Rep(G) anyons.

Next we consider the string operators of anyons that are
already present in Z(C1). To this end, it is more convenient
to use the previous “decohering out” construction starting
from the Z(C) string-net ground state. Since the Z(C) TO
can be obtained from gauging a G symmetry in a Z(C1)

TO, the anyons in Z(C) can be labeled by their G fluxes
(conjugacy classes of G). In particular, string operators for
anyons carrying the trivial flux, denoted by the subtheory
Z(C)1, have the feature that they do not change the G grad-
ing on the edge labels. As a result, these string operators
are well defined for each |�{g}〉, and therefore, they become
strong 1-form symmetries of ρG (in the sense of Eq. (107)).
We should note that Z(C)1 contains the Rep(G) anyons as
well.

Mathematically, Z(C)1 is the G symmetrization (also
known as “equivariantization”) of Z(C1) [92]. To under-
stand the effect of symmetrization, it is instructive to
consider the case when G permutes anyons. To be more
concrete, suppose a set of anyon labels are permuted into
each other under G, i.e., they form an orbit under the G
action. When G symmetry defects are present, the anyon
string operators must change type when crossing a defect
that permutes the anyon types. Thus, with the proliferation
of G defects, the string operator for an anyon in the orbit
is no longer a strong 1-form symmetry. However, their
direct sum remains so. A concrete example was discussed
in Sec. V A, where Z(C1) is the Z2 TO, and the Z2 sym-
metry permutes e and m (so they form an orbit). Indeed, as
discussed below Eq. (103), the σ σ̄ string is precisely such
a superposition of e and m string operators. More gener-
ally, each orbit of anyons under G becomes a set of new
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anyons, carrying different representations under the stabi-
lizer group of the orbit. A more complete description of the
“symmetrization” can be found in Ref. [92], and we pro-
vide some more examples in Appendix G. However, we
should note that the extra non-Abelian degeneracy due to
the symmetrization is classical in nature, as exemplified in
Sec. V A.

2. Weak SET states with anomalous symmetries

Having seen an example of classically gauging a weak
SET state, we now generalize to the case where the G
symmetry may have an anomaly. Indeed, the G symme-
try is nonanomalous in the previous example. This is
because, by construction, the symmetry can be (quan-
tum mechanically) gauged to obtain a G-graded string-net
model.

To make the generalization explicit, let us re-examine
the data of a G-graded fusion category. Recall that the data
of a fusion category consists of the label set (i.e., string
types), fusion rules, and the F symbols. The definition
requires that the F symbols satisfy the pentagon iden-
tity, which is crucial for obtaining a GGS that is a self-
consistent superposition of string-net states. However, in
our context, we need only a classical mixture of states with
defects. Therefore, we can relax the pentagon equation to
hold up for a phase factor O4 that depends only on the
G-grading of the external lines. More formally, O4 is a
4-cocycle of G, and the group cohomology class [O4] fully
characterizes the ’t Hooft anomaly of G for the SET order
[85].

A direct consequence of having a nontrivial O4 is that
the Bg

p operators from adjacent plaquettes [see Eq. (133)]
no longer commute. This means that we can no longer
write down an exactly solvable parent Hamiltonian, nor its
ground-state wave function. The extra phase factor due to
O4, however, only depends on the G gradings. Therefore,
when acting on a state with a fixed grading, the Bg

p opera-
tors only fail to commute by a phase factor [83]. This can
be exploited to build a weak SET state with an anomalous
G symmetry, where the symmetry is only anomalous in the
sense of quantum mechanical gauging.

We proceed by directly constructing a g defect net-
work by applying plaquette operators. More concretely, we
define the following mixed state with string-net degrees of
freedom:

ρSN({∂gp}) =
(∏

p

Bgp
p

)
|�0〉〈�0|

(∏
p

Bgp
p

)†

, (155)

for arbitrary choices of {gp}. Here, |�0〉 is in the B1
p = 1

subspace and has grading 1 on each edge (or equivalently,
the ground state of the string-net model with C1 as input).
Because Bg

p ’s only fail to commute up to a phase when
acting on |�0〉, there is no issue with the order in which the

Bg
p ’s are multiplied in the definition of ρSN({∂gp}). When

O4 = 1, Eq. (155) is nothing but |�{g}〉〈�{g}| [98].
Crucially, ρSN({∂gp}) depends only on the domain-wall

configuration {∂gp}. To see this, we show that for all g,

∏
p

Bg
p |�0〉 ∝ |�0〉 . (156)

First of all, the operator
∏

p Bg
p does not change the grad-

ing on the edges. Moreover, it commutes with all of the B1
p

operators, by Eq. (134). Therefore, it commutes with the
C1 string-net Hamiltonian. This implies that, on a sphere,
the ground state |�0〉 must be invariant up to an overall
factor. Given that Bg

p = (Bg
p)

† and Bg
pBg

p = B1
p , the opera-

tor Bg
p acts unitarily in the B1

p = 1 subspace. Hence, the
ground state |�0〉 is invariant under

∏
p Bg

p , up to a phase,
as claimed.

Inspired by the state in Eq. (136), we define a weak SET
state as follows:

ρwSET ∝
∑
{gp }

|{gp}〉〈{gp}| ⊗ ρSN({∂gp}). (157)

In contrast to Eq. (136), the anomaly [O4] need not vanish.
Classical gauging now amounts to replacing the domain
walls with defects. In our case, we can simply trace out the
plaquette spins in Eq. (157) to yield

ρG ∝
∑
{gp }

ρSN({∂gp}), (158)

which is a direct generalization of Eq. (127).
For completeness, we argue that ρwSET belongs to the

same mixed-state TO as the ground state ρ0 = |�0〉〈�0| of
the C1 string-net model (ignoring the symmetry). We first
show that ρwSET can be obtained from ρ0 with a QLC. This
can be achieved by the following channel:

N =
∏

p

Np , (159)

with Np defined as

Np(ρ) = 1
|G|

∑
g∈G

Lg
pBg

p�1ρ�1(Lg
pBg

p)
† +�⊥

1 ρ�
⊥
1 .

(160)

Here, �1 is a projector onto the B1
p = 1 subspace in the

vicinity of p and �⊥
1 is the projector onto its orthog-

onal complement. Notice that Bg
p acts unitarily, because

it is in the B1
p = 1 subspace. Applying this channel to

ρ0 ⊗ |{gp = 1}〉〈{gp = 1}| yields Eq. (157).
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Next we need to find a channel mapping ρwSET to ρ0.
This can be constructed as follows. We first apply a unitary
with the spin at p as the control. If the spin at p is gp , we

apply the B
gp
p operator. This way, all symmetry defects are

removed, and the plaquette spins and the string-net degrees
of freedom are disentangled. At this point, the plaquette
spins are in the maximally mixed states and one can trace
out the spins to recover the state ρ0.

Lastly, we discuss the strong 1-form symmetry of the
state ρG. The construction of the Rep(G) anyon string
operators described in Eq. (147) still applies. While there
is no parent Z(C) string-net state (since C cannot be a
fusion category), ρG can still be interpreted as classi-
cally gauging an (possibly anomalous) G symmetry in the
Z(C1) string-net state. Therefore, we expect that the strong
generalized 1-form symmetry is still described by the G
symmetrization of the Z(C1) TO [99].

3. Classifying weak SET orders

We now consider the effects of classical gauging at the
level of the anyon theory, for a general bosonic SET state
with a finite unitary symmetry, which may be anomalous.
To get started, we review the classification of pure-state
bosonic SET phases. Let us consider a G-symmetric GGS,
whose TO is given by a modular category C. Denote by
A the group of Abelian anyons in C. The symmetry G can
then enrich the TO in three ways [92,93,100]:

(1) There is a group homomorphism ϕ from G to the
group of auto-equivalence maps Aut(C),

ϕ : G → Aut(C). (161)

Here, Aut(C) consists of all the permutations of
anyon types that keep the fusion and braiding prop-
erties invariant [101]. Basically, the map ϕ tells us
how G transformations permute the anyon types.
The map ϕ is uniquely associated with a group
cohomology class [O3] ∈ H3

ϕ(G,A).
(2) The anyons of C may carry fractionalized quan-

tum numbers under G. However, given a ϕ, there
is a possible obstruction to symmetry fractionaliza-
tion, given by the class [O3]. When [O3] vanishes,
distinct symmetry fractionalization classes form a
torsor over H2

ϕ(G,A). That is, different possible pat-
terns of symmetry fractionalization can be related to
each other by elements of H2

ϕ(G,A).
(3) Once ϕ and the symmetry fractionalization of

anyons are known, we then need to specify the
fusion and braiding properties of G symmetry
defects. In particular, given ϕ and the symme-
try fractionalization of anyons, the global sym-
metry has an ’t Hooft anomaly [O4] valued in
H4(G, U(1)) [92,102–104]. When the class [O4]

vanishes, distinct equivalence classes form a tor-
sor over H3(G, U(1)), up to further identifications
[105,106]. Physically, an element of H3(G, U(1))
means stacking with a bosonic G SPT state.

It is useful to interpret this data in terms of an SET state
with fluctuating symmetry domain walls. Each domain
wall is associated with an anyon permutation action given
by ϕ. The obstruction [O3] means that defect fusion may
fail to be associative [107]. If [O3] vanishes, then the
defect fusions can be made associative with appropriate
decorations of Abelian anyons on the junctions. Inequiva-
lent patterns of decorations are classified by a torsor over
H2
ϕ(G,A).
Lastly, once we have well-defined defect fusions,

including decorations on tri-junctions, there may be a
Berry phase in the space of states with defects, which gives
the H4 anomaly. From this interpretation, it is clear that
with a non-trivial H3

ϕ(G,A) class the map ϕ does not make
sense in a pure (2+1)d system. The class [O4] gives the ’t
Hooft anomaly of the G symmetry.

Before discussing classically gauging the symmetry of
an SET, we review the effects of gauging the strong sym-
metry of a pure state at the level of the modular category.
For a finite G, gauging an SET state results in a TO, whose
anyon theory corresponds to a modular category denoted
by CG. It can be constructed from C as follows:

(1) First, as already discussed in Sec. V B, gauge invari-
ance under G means that the anyon theory C must
be symmetrized to form a new premodular category,
denoted by (CG)1, which has Rep(G) as its transpar-
ent center. The premodular category (CG)1 resulting
from symmetrization contains all information about
the symmetry action on anyons [108]. Importantly,
given ϕ, this step of symmetrizing can be done if
and only if the [O3] class vanishes.

(2) (CG)1 is only a subcategory of CG. The modular cat-
egory CG is in fact a modular extension of (CG)1.
Physically, the anyons of CG that are not in (CG)1
are G flux anyons and braid nontrivially with G
gauge charges in Rep(G) ⊂ (CG)1, thus restoring
modularity. See Appendix G for more on modular
extensions.

Classically gauging the weak symmetry G means that a
classical mixture of SET states with arbitrary G defects is
formed. The precise structure of the density matrix is deter-
mined by imposing Gauss’s law weakly. In other words,
the density matrix must be invariant under conjugation by
local gauge transformations, which, intuitively speaking,
deform the G defects locally. This condition then requires
that the obstruction [O3] vanishes, otherwise defect con-
figurations, which differ only locally can have different
total anyon charge, and such configurations can not be
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related by a local gauge transformation. We also notice
that there is no longer an anomaly valued in H4(G, U(1)),
since the classical mixture has no coherent phase infor-
mation. It is worth noting that the results here are similar
to the classification of “average SET orders” proposed in
Refs. [27,109].

The analysis of the topological order in the classi-
cally gauged state proceeds similarly following the dis-
cussions in the G-graded string-net example, so we will
be brief here. Observe that the arbitrary insertions of the
G defects imply that only G-invariant string operators are
well defined as strong 1-form symmetry. This is to say
that the C anyon theory must be symmetrized to form the
premodular (CG)1 category. Another way to see this when
there is no ’t Hooft anomaly is to note that the anyon string
operators in (CG)1 do not alter the G defects. Since they
give rise to emergent 1-form symmetry in the gauged SET
pure state, they must form strong 1-form symmetry for the
classically gauged mixed state. We note that the descrip-
tion in terms of premodular anyon theory automatically
excludes those symmetries with nontrivial H3 obstruction
classes.

In the other direction, as discussed in Appendix G,
every premodular anyon theory whose transparent center
is purely bosonic can be viewed as symmetrization of a
certain modular anyon theory. Thus the classical gauging
construction can realize mixed TOs with such premodular
anyon theories as strong 1-form symmetry.

Lastly, we comment that, if the symmetry is nonanoma-
lous, then one can first quantum mechanically gauge the
symmetry to get a new TO, which contains Rep(G) as
a subcategory (the gauge charges). Now, a QLC can be
applied to proliferate the Rep(G) anyons. When the SET
state is nonchiral, or more generally, can be realized by a
string-net model, then this is precisely the construction in
Sec. V B.

D. Walker-Wang models

The mixed states in the previous two sections, con-
structed from G-graded string-net models or through clas-
sically gauging bosonic SETs, have the property that all of
transparent anyons are bosons. There are, of course, pre-
modular categories with transparent fermions. To realize
mixed states whose anyon theories are arbitrary premod-
ular categories, we employ Walker-Wang (WW) models
[110]. We show that for any premodular category C, we
can decohere the corresponding WW model to construct a
mixed TO with C as the strong 1-form symmetry.

WW models take as an input any premodular category C,
and produce a (3+1)d commuting-projector Hamiltonian.
The topological order in the ground state of the WW model
can be understood from the mathematical structure of the
premodular category. As reviewed in Appendix G, each
premodular category has a transparent center of anyons,

all of which braid trivially with every other anyon. This
transparent center is uniquely associated with a finite group
G, such that it can be identified as (bosonic or fermionic)
gauge charges of G. The bulk of the Walker-Wang model
turns out to be a (possibly twisted) G gauge theory. The
anyon theory C is realized on the surface of the model,
with the transparent center identified as the gauge charges
in the bulk. When the input category C is modular with a
trivial center, the resulting TO is trivial (invertible).

We make a slab of the 3D model, which has both top
and bottom surfaces. When viewed as a quasi-2D system,
the anyon types can be divided into three groups.

(1) The first are those that are confined to the top and
bottom surfaces. We choose, as a convention, that
the top surface hosts the anyon theory C, while the
bottom has the conjugate theory C.

(2) The transparent center T are gauge charges that are
mobile within the 3D bulk. Thus, the top and bottom
surfaces share the same transparent center T .

(3) The last group consists of anyons that braid nontriv-
ially with T , which are descendants of flux loop
excitations in the 3D bulk created by membrane
operators—hence, we call them fluxlike anyons.
The looplike excitations can condense on the sur-
faces (which should actually be taken as the
definition of the boundary condition), so the fluxlike
anyons can be created with a membrane operator
stretching from the top surface to the bottom sur-
face, as in Fig. 9. In the quasi-2D slab, these
membrane operators become string operators for the
fluxlike anyons.

Together, the slab realizes the quantum double (or Drinfeld
center) of C. The three types of excitations are illustrated
in Fig. 9.

Next, imagine cutting the slab through the middle to
form two thin slabs, then trace out the lower slab. Here,
we assume that the slab is thick enough compared to the

FIG. 9. Anyons of a WW model. The input of a WW model is
a premodular category C. For a quasi-2D slab, the anyons in C
are hosted on the top surface, while the bottom surface hosts the
conjugate anyon theory C̄. The transparent anyons in C (purple)
are bulk excitations and are shared by both surfaces. The flux
anyons (orange) are created by a quasi-1D membrane operator
that terminates on the two surfaces.
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width of support of the string operators of the surface
anyons (including the transparent center). Since the WW
Hamiltonian is a fixed-point model with zero correlation
length, we expect all string operators of the surface anyons
have finite-width support (see Ref. [111] for examples).
So in the upper-half slab these string operators are still
well defined, and not affected by tracing out the lower half.
As a result, they remain (generalized) 1-form symmetry of
the state. On the other hand, string operators of the flux
anyons must have support in the lower half, so they are no
longer strong symmetries. The resulting state thus has C as
its generalized 1-form symmetry.

E. Phase equivalence for general premodular
categories

We have seen through a number of examples that deco-
hered TO states can be assigned premodular anyon the-
ories. The anyon string operators generate (noninvertible
and invertible) strong 1-form symmetries of the state. It
is natural to conjecture that this holds for any mixed-state
TO. We now discuss how the anyon theory is affected by
the application of QLCs, based on observations made in
the previous sections and generalizations of the Abelian
case in Sec. IV C.

One way to construct mixed-state TOs is to start from a
pure-state TO, whose anyon theory is a modular category
C, and apply a QLC to “decohere out” a subcategory D
of anyons. In other words, one forms a classical mixture of
excited states, obtained from exciting anyons in the subcat-
egory. One expects that once the density of excitations is
higher than some threshold, the decohered state is in a new
phase. The remaining 1-form symmetry in this decohered
phase is the “commutant” subcategory D′ of the subcat-
egory. That is, D′ contains the anyons that braid trivially
with those in D. Here, trivial braiding between an anyon a
and b means the S matrix element Sab/S11 = dadb, where
da/b are the quantum dimensions. The same construction
can obviously be applied to a mixed state to “decohere out”
a subcategory of anyons.

Another way that a QLC can affect the anyon theory is
to classically gauge a finite symmetry. That is, if a mixed
state ρ with anyon theory C contains a bosonic transpar-
ent subcategory B, it can be obtained from a mixed state
with anyon theory C/B by applying a QLC. Here, C/B
is the premodular category obtained by condensing B in
C. As reviewed in Appendix G, in this case, there always
exists a finite group G, such that B is isomorphic to the
category Rep(G) of finite-dimensional linear representa-
tions. Mathematically, it means that C can be recovered by
symmetrizing the G symmetry in C/B. Thus, one can start
from a mixed-state with anyon theory C/B, and classically
gauge a G symmetry to obtain a mixed state with anyon
theory C.

Suppose that ρ1 and ρ2 are mixed states that can be con-
nected by a QLC N21, such that N21(ρ1) = ρ2. Suppose
further that N21 can be purified into a unitary V acting
on ρ1 ⊗ |0〉〈0|. By our assumption, both ρ1 and ρ2 can
be associated to premodular categories, C1 and C2, respec-
tively. A straightforward generalization of the argument
in Sec. IV shows that if ρ2 has a strong generalized 1-
form symmetry operator W, then ρ1 ⊗ |0〉〈0| has a strong
1-form symmetry given by VWV†. However, if W repre-
sents a transparent boson, it may become breakable in ρ1,
in light of the examples in Secs. V A and V B.

Thus, the premodular anyon theories Ci for the mixed
state ρi should be related by the following: there exists a
transparent, bosonic subcategory B2, such that

C2/B2 ⊂ C1. (162)

Here, ⊂ means that C2/B2 is a subcategory of C1. Phys-
ically, the relation describes two effects of a QLC on the
anyon theory: it can “decohere out” a subcategory, leaving
its commutant, or classically gauge a symmetry.

If ρ1 and ρ2 are two-way connected by QLCs, then there
exists bosonic transparent subcategories Bi ⊂ Ci such that

C2/B2 ⊂ C1, C1/B1 ⊂ C2. (163)

Using this argument, one can show that the decohered
doubled Ising state and the Z2 TC do not belong to the
same phase. Indeed, if there is a QLC to transform the
decohered doubled Ising state to the Z2 TC state, then one
can purify the Z2 TC state into a doubled Ising state. This is
clearly impossible, as any purification of the Z2 TC needs
to have all of its Z2 × Z2 1-form symmetries, which are
absent in the doubled Ising TO.

One immediate conclusion is that, if C1 and C2 con-
tain no bosonic transparent subcategory (meaning they
are modular up to transparent fermions), then Eq. (163)
implies C1 = C2. If only one of them, say C1, is modular,
then we find

C1 ⊂ C2, C2/B2 ⊂ C1. (164)

The first relation implies C2 = C1 � C ′
1, where C ′

1 is the
commutant of C1 (see Appendix G). However, then the
second relation implies C1 � (C ′

1/B2) ⊂ C1, which implies
that C ′

1/B2 is trivial, so C ′
1 is a bosonic transparent subcate-

gory itself, which can be freely removed from C2. We thus
conclude that C1 = C2.

Now suppose Tb is the maximal bosonic transparent sub-
category in C. We define Cmin = C/Tb as the premodular
category obtained from condensing Tb. By definition, the
transparent center of Cmin is either trivial, in which case
Cmin is modular, or given by Z(1)2 , in which case Cmin

is supermodular [112]. Supermodular categories describe
fermionic TOs for GGSs. Similar to the Abelian case, we
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conjecture for general premodular categories that if C1 and
C2 satisfy Eq. (163), they must have the same Cmin.

The discussion so far closely parallels that of (invertible)
strong 1-form symmetry for Abelian TOs in Sec. IV C.
However, unlike Abelian anyon theories, a non-Abelian
supermodular category does not necessarily factorize into
the product of a modular category and Z(1)2 . If the cat-
egory does not factorize, we refer to it as “intrinsically
fermionic.” Theories that are intrinsically fermionic are
not captured by decohering Pauli stabilizer models or the
constructions in Secs. V B and V C.

The simplest nontrivial example of an intrinsically
fermionic anyon theory is the so-called SO(3)3 category
[108]. This anyon theory has four anyon types 1, f , s, sf ,
where f is the transparent fermion, and the non-Abelian
anyon s satisfies the following fusion rule:

s × s = 1 + s + sf . (165)

From this, the quantum dimension of s is ds = 1 + √
2.

Furthermore, the self statistics of s is θ(s) = i. A mini-
mal modular extension of SO(3)3 is the SU(2)6 theory. The
fermion f is identified as the spin-3 particle, and s as the
spin-1. There are infinitely many intrinsically fermionic
premodular categories—for example, the integer-spin sub-
category of the SU(2)4m+2 modular categories for all m ≥
0. We can thus construct a mixed-state TO by proliferating
the emergent spin-(2m + 1) fermion in a SU(2)4m+2 TO or
using the WW construction.

Finally, we conjecture that the strong 1-form symme-
tries, described by premodular categories, provide a full
classification of locally correlated mixed-state TOs. We
have provided evidence that two mixed states that are two-
way connected by QLCs have the same premodular anyon
theories. The converse is a difficult problem, and remains
an open question even in the case of ground-state TOs
(although, it is widely believed to be true).

VI. CONCLUSION AND DISCUSSION

We have proposed a classification of mixed-state TOs
according to their strong (generalized) 1-form symmetries.
Notably, this includes mixed-state TOs that are intrinsi-
cally mixed, as first suggested in Ref. [33]. These are
characterized by premodular anyon theories with transpar-
ent anyons, i.e., at least one anyon has trivial braiding
relations. We established strong constraints on the anyon
theories exhibited by mixed states belonging to the same
mixed-state TO, and we proved that the minimal anyon
theory Amin is an invariant of the phase. We conjecture
that, more generally, the anyon theory itself characterizes
the mixed-state TO but leave the proof in the general case
as an open question.

Furthermore, we constructed a wide variety of exam-
ples of fixed-point mixed states. Firstly, we established

that topological subsystem codes provide a natural frame-
work for studying stabilizer states under Pauli noise. This
led to examples of mixed states characterized by arbitrary
Abelian premodular anyon theories. We then constructed
examples of mixed states characterized by non-Abelian
anyon theories by leveraging G-graded string-net models.
We subsequently generalized the construction by classi-
cally gauging SET states, which is allowed to have an
anomalous G symmetry. Lastly, we showed that mixed
states characterized by arbitrary premodular anyon theo-
ries can be constructed from a slab of WW model with
depolarizing noise on the lower half of the system.

Our work has left a number of open questions and
avenues for future work. For one, a fundamental aspect of
our approach is specifying a space of mixed states with
which to define mixed-state TOs. Our current definition of
“locally correlated mixed states” restricts to the class of
states that can be purified into a GGS. While the definition
includes many interesting classes of examples, e.g., all
decohered topological states, one can easily imagine mixed
states that do not fit into this definition. It is thus highly
desirable to have a definition of mixed-state TO that does
not make any reference to the purification or Hamiltonians.

One potential source of inspiration in this direction
comes from the entanglement bootstrap program [66,113],
which has seen success in characterizing pure-state TOs
without any reference to a parent Hamiltonian. Hence, it
may be fruitful to extend the entanglement bootstrap pro-
gram to mixed states. In this case, the class of mixed states
might be determined by imposing conditions on the entan-
glement or the conditional mutual information (CMI) in
particular, similar to the axioms employed in entanglement
bootstrap.

Indeed, it is widely expected that, for ground-state TOs,
the CMI vanishes for the geometry given in Fig. 5. One
can also argue that this is the case for all examples in
Sec. III D associated with topological subsystem codes, but
not for the Y-decohered TC state, whose subsystem code is
not topological. Thus, we expect that CMI should play an
important role in charting the class of mixed states [12,43].

In fact, even relaxing the Rényi-2 short-range correlated
assumption in the definition of locally correlated mixed
states already opens up possibilities for new types of mixed
states. For example, in a recent work [114] a topologi-
cally nontrivial mixed state in (1+1)d was discovered, with
long-range Rényi-2 correlations.

For ground-state TO, certain data of the TO can
be extracted from the ground-state wave function. For
instance, the entanglement entropy contains a subleading
correction lower bounded (and in many cases, equal to) by
the logarithm of the total quantum dimension [115]. Gen-
eralizations of these results to mixed-state TO are worth
investigating. In fact, the “topological correction” to the
logarithmic negativity has been studied in the Z2 TC model
under the bit-flip channel [32]. In an upcoming work we
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will compute topological negativity in other decohered
stabilizer models, which provide further evidence for the
conjectured classification.

TOs in ground states in (2+1)d can be associated with
a 3d topological quantum field theory (TQFT). For TOs
in mixed states, while one does not expect there is a
full 3d TQFT description, it is possible that a weaker
notion of TQFTs without assuming full spacetime sym-
metry still makes sense. For example, we have shown
that one can still define state space on closed oriented
manifolds (in terms of coherent spaces), as well as the
modular data (i.e., the actions of the mapping class group).
Further structures required by the TQFTs at the level of
state spaces are interesting to investigate, such as states
associated with punctures, closely related to anyon exci-
tations. Such a mathematical structure may be considered
as a “mixed-state TQFT” [116], providing an alternative
characterization of mixed state TOs.

Lastly, a natural avenue for further work is the gener-
alizations to TOs in three spatial dimensions. In the case
of ground states, a complete understanding of (3+1)d TOs
that admit a topological field theory description has been
achieved recently [117–119]. We expect that the methods
developed in this work can also shed light on the classifi-
cation of mixed-state TOs in (3+1)d, which may include
intrinsically mixed TOs whose pure-state counterparts are
anomalous. An example of this kind is the Z2 gauge the-
ory with both fermionic charge and fermionic loops, as
described in Refs. [119–121]. It can be realized by a (4+1)d
generalization of the WW-type construction discussed in
Sec. V D, which we briefly outline: first, a generalization
of the WW model by Ref. [121] realizes a (4+1)d invert-
ible state with the anomalous (3+1)d TO on the boundary.
Then we make a slab of the model, and trace out one of
the two boundaries. Now, the anomalous TO is realized in
(3+1)d as a mixed state.
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APPENDIX A: PURIFICATIONS OF THE
FERMION-DECOHERED TORIC CODE

In this Appendix, we show that the fermion-decohered
TC state in Sec. III D 2 can be purified into any state that
is the bosonization of a fermionic ground state with total
even fermion parity.

First, we briefly recall the notation used in the (2+1)d
bosonization map of Ref. [64], defined on a square lat-
tice. We associate a complex fermion to each plaquette,
which can be represented as a pair of Majorana oper-
ators γp , γ ′

p . We take all of the edges of the lattice to
be oriented. We then define the fermion parity operator
Bp = (−1)np = iγpγ

′
p at a plaquette p and the hopping

operator Se = iγL(e)γ
′
R(e), which transfers fermion parity

between neighoring plaquettes. Here, L(e) (R(e)) denotes
the plaquette to the left (right) of the oriented edge e.

With this notation, we consider the following two chan-
nels:

N1 =
∏

e

N1,e, N1,e(ρ) = 1
2
(ρ + SeρSe),

N2 =
∏

e

N2,p , N2,p(ρ) = 1
2
(ρ + BpρBp),

(A1)

and their composition N = N1 ◦ N2. We claim that for
any fermionic pure state |ψ〉 with even fermion parity∏

p Bp = 1, we have

N (|ψ〉〈ψ |) ∝ 1 +
∏

p

Bp . (A2)

To prove this, first notice that N2 is a fully dephasing
channel in the np basis. Thus, after applying N2, the den-
sity matrix becomes diagonal in the |{np}〉 basis. Next,
notice that N1(ρ) is a fixed point of N1. By applying
products of Se’s, all different basis states |{np}〉 can be
connected with each other, with matrix element always
equal to ±1. Therefore, the fixed point of N1 must be an
equal-weight mixture of all |{np}〉〈{np}| states.

To identify purifications of the fermion-decohered TC
state, we can bosonize the construction. This is because
the bosonization of the state in Eq. (A2) is precisely
the fermion-decohered TC state. Moreover, both Se and
Bp are mapped to local Pauli operators, so the chan-
nels N1 and N2 are local after bosonization. We can
then choose |ψ〉 to be any ground state of a fermionic
Hamiltonian Hf , which can always be expressed in terms
of Se and Bp . In the spin representation, |ψ〉 is the
ground state of the bosonized Hamiltonian (see Ref. [64]).
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Finally, the fermion-decohered TC state is obtained by
applying the bosonized channels N1 and N2. Thus, if we
purify the channels N1 and N2 we have a purification of
the fermion-decohered TC state.

APPENDIX B: RÉNYI CORRELATIONS OF
PAULI-DECOHERED STABILIZER STATES

Here, we argue that, when the subsystem code associ-
ated to a Pauli-decohered stablizer state is topological, then
the associated mixed state under maximal decoherence is
Rényi-1 and -2 locally correlated, as defined in Sec. II. We
start by considering the Rényi-1 correlations.

We let ρ be a mixed state defined by a topological sub-
system code, where the state is maximally mixed in the
gauge subsystem. To derive a contradiction, we assume
that there exists operators Mi and Mj localized at the sites
i and j , such that the Rényi-1 correlations of Mi and Mj in
the state ρ do not vanish in the separation between i and j

To make this assumption more explicit, let us choose
both a set of local generators for the gauge group and a set
of local generators for the stabilizer group on the infinite
plane (or a sphere). Then, by the topological property, there
exists a finite distance �, such that the support of every
gauge generator and stabilizer generator can be contained
in a box of dimensions �× �. We assume more explic-
itly that, for |i − j | � �, there exists operators Mi and Mj
localized at i and j such that

Tr[MiMj ρ] − Tr[Miρ] Tr[Mj ρ] �= 0. (B1)

Note that for simplicity, we assume that Mi and Mj have
bounded support.

To make progress, let us decompose Mi and Mj into
Pauli operators:

Mi =
∑

Pi

CPiPi, Mj =
∑
Pj

CPj Pj . (B2)

Here, the Pi and Pj operators are Pauli operators local-
ized near i and j, and CPi , CPj are complex coefficients.
The correlator in Eq. (B1) can be rewritten using the
decomposition of Mi and Mj to give

∑
Pi,Pj

C̃PiPj

(
Tr[PiPj ρ] − Tr[Piρ] Tr[Pj ρ]

) �= 0, (B3)

for some coefficient C̃PiPj .
Now, we consider different possibilities for PiPj . First,

if PiPj fails to commute with at least one stabilizer, then
the summand is zero, since ρ is a projector onto the code
space. If PiPj is a gauge operator, not belonging to the
stabilizer group, then the summand also vanishes. This
is because, due to the decoherence, the expectation value
of gauge operators outside of the stabilizer group is zero.

Therefore, the summand can only be nonzero if PiPj is a
stabilizer and Pi, Pj are not stabilizers.

This leads us to a contradiction, since it is not possi-
ble for PiPj to be a stabilizer, while Pi and Pj are not
stabilizers. Suppose Pi and Pj are gauge operators. Then,
they must fail to commute with at least on gauge genera-
tor, since they are not in the stabilizer group. Given that
PiPj is a stabilizer, they must fail to commute with the
same gauge generators. This is not possible, because i and
j are well separated relative �, the maximum linear size of
a gauge generator. Similarly, if Pi and Pj fail to commute
with a stabilizer, then they must fail to commute with the
same stabilizer. Again, this cannot happen due to the fact
that each stabilizer generator can be contained in a box of
linear size �. Therefore, ρ must have vanishing Rényi-1
correlations.

An analogous calculation shows that ρ must also have
vanishing Rényi-2 correlations. To argue that this is the
case, the summand in Eq. (B3) is replaced by the Rényi-2
correlator(

Tr[PiPj ρ(PiPj )
†ρ] − Tr[PiρP†

i ρ] Tr[Pj ρP†
j ρ]
)
/Tr[ρ2].

(B4)

This is only nonzero if PiPj is a gauge operator and Pi,
Pj are not gauge operators. This is not possible, how-
ever, because that implies that Pi and Pj fail to commute
with the same stabilizer generator, even though they are
well separated relative to �. We conclude that the Rényi-2
correlations must also vanish.

Thus, if ρ corresponds to a topological subsystem code
and is obtained by decohering a stabilizer state, then it
admits a purification into a GGS and has vanishing Rényi-1
and -2 correlations. In other words, ρ is a locally correlated
mixed state.

APPENDIX C: CONDITIONAL MUTUAL
INFORMATION OF THE Y-DECOHERED TC

STATE

We prove here that the CMI I(A : C|B) is nonvanishing
in the Y-decohered TC state ρY, for the subsystems A, B,
and C shown in Fig. 5, as claimed in Sec. III D 3. We begin
by recalling a formula for the CMI, applicable to stabilizer
states (which may be mixed).

The CMI can be expressed in terms of entanglement
entropies as

I(A : C|B) = S(AB)+ S(BC)− S(B)− S(ABC). (C1)

For a stabilizer state, the entanglement entropy for an
arbitrary subsystem A is

S(A) = nA − kA, (C2)

where nA is the number of qubits in the subsystem A and
kA is the dimension of the subgroup of stabilizers whose
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support can be entirely contained within A. Substituting the
formula for the entanglement entropy into the expression
for the CMI, we find

I(A : C|B) = kABC + kB − kAB − kBC. (C3)

Notice that the dependencies on the number of qubits
cancel.

With this formula, the calculation of I(A : C|B) for the
Y-decohered TC state is straightforward. For simplicity,
we assume that ρY is defined on a torus with dimensions
L × L. Since the stabilizers of ρY are generated by products
of Pauli-Y operators along the diagonals [see Fig. 4(a)],
there are no stabilizers supported entirely on B or AB. This
means that kB = kAB = 0. The formula for the CMI in the
state ρY reduces to

IρY(A : C|B) = kABC − kBC. (C4)

There are certainly stabilizers supported within ABC
that are not contained within BC—namely, the stabilizers
that pass through the subsystem A. Therefore, the CMI is
nonzero. Furthermore, the number of stabilizers that pass
through A depends only on the volume and geometry of A.
Importantly, it is independent of the separation between A
and C. Thus, as claimed, the CMI is nonvanishing in the
width of the subsystem B.

APPENDIX D: MINIMAL ANYON THEORY AS A
TOPOLOGICAL INVARIANT

In this Appendix, we show that Eq. (78) follows from
Eq. (77). We start by constructing an injective map from
Amin

1 to Amin
2 . First, the anyons of Amin

1 can be lifted to
anyons in A1/B1. This is only ambiguous up to fusing with
transparent bosons in A1/B1. We denote this injective map
by

f1 : Amin
i → A1/B1. (D1)

According to Eq. (77), A1/B1 is a subtheory of A2, so we
can define an injective map

g1 : A1/B1 → A2. (D2)

Finally, we define a noninjective map from A2 to Amin
2 by

condensing all of the transparent bosons

h1 : A2 → Amin
2 . (D3)

Although h1 is noninjective in general, when restricted
to image of g1 ◦ f1, it is injective. This follows from the
fact that the anyons in the image of f1 must correspond to
distinct anyons in Amin

1 after condensing all of the trans-
parent bosons. Therefore, they differ from one another in

A1/B2 by more than fusing with transparent bosons. This
means that the anyons in the image of g1 ◦ f1 also differ
by more than fusing with transparent bosons, and hence,
after condensing the transparent bosons in A2, they must
correspond to distinct elements of Amin

2 .
Similar to the construction of h1 ◦ g1 ◦ f1, we can define

an injective map from Amin
2 to Amin

1 . Since we have injec-
tive maps between Amin

1 and Amin
2 , the orders of the anyon

theories must be the same, i.e., |Amin
1 | = |Amin

2 |.
Next, we argue that the anyons in Amin

1 and Amin
2 have

the same exchange statistics and fusion rules. The fact that
the exchange statistics are the same follows immediately
from the observation that f1, g1, and h1 preserve the statis-
tics of the anyons. The maps also preserve the braiding
relations.

To see that the fusion rules of Amin
1 and Amin

2 are the
same, we note that there are two possibilities for Amin

i .

(1) All of the transparent anyons in Ai are bosons, in
which case, Amin

i is modular.
(2) Ai has a transparent fermion, and thus, Amin

i takes
the form Amin

i = Ci � Z(1)2 , for some modular theory
Ci [125].

Because the braiding and statistics are preserved, if Amin
1

has a transparent fermion, then so too does Amin
2 . Hence,

in either case, the map h1 ◦ g1 ◦ f1 maps the modular part
of Amin

1 to the modular part of Amin
2 , implying that the mod-

ular factors have the same exchange statistics and braiding
relations. Finally, according to the Verlinde formula, which
relates the statistics and braiding of the anyons to their
fusion rules, the modular parts of Amin

1 and Amin
2 must have

the same fusion rules. We then conclude that Amin
1 must be

equal to Amin
2 .

APPENDIX E: PHASE EQUIVALENCE OF
ABELIAN SINGLE-GENERATOR ANYON

THEORIES

In Sec. IV C, we showed that if mixed states ρ1 and ρ2
are two-way connected by QLCs, then their anyon theories
A1 and A2 satisfy

A2/B2 ⊂ A1, A1/B1 ⊂ A2, (E1)

for some transparent boson subgroups B1 and B2. Here, we
consider the implications of these constraints when both
A1 and A2 admit a single generator, i.e., we take the anyon
theories to be

A1 = Z(q)N , A2 = Z(r)M , (E2)

which are defined in Sec. III C.
We start by noting that, in general, the anyon theories

Z(q)N and Z(r)M can be factorized into subtheories whose
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orders are powers of primes—analogous to the fundamen-
tal theorem of finite Abelian groups. To make this explicit,
we write N and M as products of primes

N =
∏

p

pnp , M =
∏

p

pmp . (E3)

The anyon theories A1 and A2 then factorize as for the qp
and rp specified below. The generator of the factor associ-
ated to the prime p is [N/pnp ] and [M/pmp ], respectively.
It can be checked using the formula for the braiding rela-
tions in Eq. (47) that the generators for different prime
factors have trivial braiding relations with each other,
meaning that the factors are indeed independent.

To determine qp and rp , we compute the statistics of the
generators. Using the formula for the exchange statistics in
Eq. (46), we find

θ([N/pnp ]) = exp
{

2π i
pnp

qN
pnp

}
, (E4)

θ([M/pmp ]) = exp
{

2π i
pmp

rM
pmp

}
. (E5)

This implies that qp and rp are

qp = qN
pnp

, rp = rM
pmp

. (E6)

Notice that if q is divisible by pnp , then qp = 0 mod pnp.
This would mean that there is a factor in the decomposition
of Z(q)N in Eq. (E4) that is purely composed of transpar-
ent bosons. Since QLCs can add and remove factors of
transparent bosons, we restrict ourselves to the case where,
respectively, q and r are not divisible by pnp and pmp ,
for any prime p and np , mp �= 0. This, of course, excludes
q = 0 and r = 0 from our consideration.

With this condition on q and r, we prove that Eq. (E1)
implies that A1 = A2. We begin by arguing that if np �= 0,
then mp �= 0. That is, for each prime subgroup of Z(q)N

there is a corresponding subgroup of Z(r)M . This follows
immediately from the fact that A1/B1 is a subgroup of
A2. Suppose np �= 0, for some prime p , then there is a
Zpk subgroup of A1/B1, for some k ∈ {1, 2, . . . pnp − 1},
which must be a subgroup of Z(r)M . This is only possible if
mp �= 0. Likewise, the condition that A2/B2 ⊂ A1 tells us
that if mp �= 0, then np �= 0.

We now focus only on the factor associated to p and
relate qp and rp . We use the notion of a minimal anyon
theory, discussed in Sec. IV C and Appendix D. The anyon
theories Amin

1 and Amin
2 admit a prime factorization, as in

Eq. (E4). Moreover, the subgroups of Amin
1 and Amin

2 asso-
ciated to the prime p must be generated by images of the
generators of Z

(qp )

pnp and Z
(rp )

pmp after condensing transparent

bosons. Then, since Amin
1 = Amin

2 , the generators of Z
(qp )

pnp

and Z
(rp )

pmp must have the same exchange statistics. This
gives us

e2π iqp/pnp = e2π irp/pmp
, (E7)

which implies

qp = rppmp −np mod pmp . (E8)

Notice that, if np = mp , then the expression above gives
qp = rp , and we have that the factors are the same. Thus,
we need only to consider the case where, without loss of
generality, mp > np .

Assuming that mp > np , we again consider the condition
A1/B1 ⊂ A2. In this case, the subgroup of A1/B1 associ-
ated to p must be a proper subtheory of Z

(rp )

pmp , which is
generated by an anyon with the same statistics as the gen-
erator of Z

(qp )

pnp . Since the generator of Z
(qp )

pnp has the same

statistics as the generator of Z
(rp )

pmp , we see that Z
(rp )

pmp must
have an anyon with the property that it generates a proper
subgroup of Z

(rp )

pmp and has the exchange statistics of the

generator. Let us write the generator of Z
(rp )

pmp as a. Then

there must be an anyon apk
with 0 < k ≤ mp that has the

same exchange statistics as a. Note that k must be greater
than 0 so that it generates a proper subgroup. The condition
that θ(a) = θ(apk

) gives [126]

e2π irp/pmp = e2π irp p2k/pmp
, (E9)

which implies

rp = rpp2k mod pmp . (E10)

We now argue that there is no solution to this equation
(other than rp = 0, which we have ruled out). The con-
dition in Eq. (E10) can be re-expressed as

rp(p2k − 1) = �pmp , (E11)

for some integer �. The right-hand side is divisible by pmp ,
so the left-hand side must also be divisible by pmp . How-
ever, the factor (p2k − 1) is not divisible by any positive
power of p [127]. Therefore, according to Eq. (E11), rp
must be divisible by pmp . However, rp satisfies 0 < rp <

pmp , so it also cannot be divisible by pmp .
This leads us to conclude that the anyon theories A1 and

A2 in Eq. (E2) can only satisfy the conditions in Eq. (E1)
if np = mp and qp = rp , for every prime p . This implies
that A1 = A2.
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APPENDIX F: COORDINATE
TRANSFORMATIONS AND MODULAR DATA

In this Appendix, we compute the expectation values of
the modular transformations inside a coherent space of the
decohered Ising string-net model. In particular, we con-
sider the Ising string-net model on a torus, and choose an
arbitrary ground state with Wx(ψψ̄) = Wy(ψψ̄) = 1. This
subspace is spanned by the states in Eq. (117). The deco-
hered state N (|�〉〈�|) belongs to the coherent subspace
labeled by Wx(ψψ̄) = Wy(ψψ̄) = 1.

Let R be a modular transformation operator. First, we
consider the standard expectation value of R for a state
within the coherent space with W(ψψ̄) = 1. We can com-
pute

Tr[RN (ρ)] = Tr[N ∗(R) |�〉〈�|] = 〈�|N ∗(R)|�〉 ,
(F1)

where R is an arbitrary coordinate transformation. We then
find, for N in Eq. (86),

N ∗(R) = 1
2Ne

∑
e

∏
e∈e

μz
eR
∏
e∈e

μz
e

= 1
2Ne

∑
e

∏
e∈e

μz
e

∏
e′∈R(e)

μz
e′R, (F2)

where the sums are over collections of edges e. If e �= R(e),
then the expectation value is 0 since μe

z excites plaquette
terms. Thus, we only need to consider e such that e = R(e).
The result is

Tr[RN (ρ)] = NR

2Ne
〈�|R|�〉 . (F3)

Here, NR counts the total number of R-invariant subsets
of edges e = R(e). Therefore, we conclude that up to an
overall constant, the result is identical to the pure-state
expectation value.

We note that another way to define modular matri-
ces is to consider the “distance” between the mixed state
ρ = N (|ψ〉〈ψ |) and the transformed state RρR†. For sim-
plicity, we consider the Hilbert-Schmidt (or “Renyi-2”)
distance. For two states ρ and σ , we define the “Renyi-2”
distance as

Tr ρσ√
Tr ρ2

√
Tr σ 2

. (F4)

For σ = RρR†, since R is unitary we have Tr σ 2 = Tr ρ2.
For ρ = N (|�〉〈�|), the numerator is given by

Tr(ρRρR†) = Tr
[
N (|�〉〈�|)N (|� ′〉〈� ′|)]

= Tr
[|�〉〈�| (N ∗ ◦ N )(|� ′〉〈� ′|)]

= Tr
[|�〉〈�|N (|� ′〉〈� ′|)] ,

(F5)

where |� ′〉 = R |�〉. We can then expand N (|� ′〉〈� ′|)
into a convex sum of |� ′〉 with various plaquette excita-
tions. The only term that contributes is |� ′〉〈� ′|, which
should have a weight 1/2Np −1. Here, we have used the fact
that W(ψψ̄) = 1 on |� ′〉. Thus, we find

Tr(ρRρR†) = 1
2Np −1 | 〈�|R|�〉 |2. (F6)

The normalization factor in the denominator evaluates to
Tr ρ2 = 1/2Np −1, so the “Renyi-2” distance

Tr(ρRρR†)

Tr ρ2 = | 〈�|R|�〉 |2. (F7)

We note that the Renyi-2 observable only gives the modu-
lus squares of the expectation values of R, which determine
the representation of R in the space up to an overall
phase.

We have found that, within the coherent subspace, the
two definitions of the expectation value of modular trans-
formations are identical to those for the ground states up to
overall normalization. Thus, in principle, we can read off
the modular matrices for the decohered doubled Ising state
from those of the ground states in the subspace, Eq. (117).
Below, we briefly outline how this is done for the S matrix.

The S transformation for the doubled Ising theory is
defined as [92]

|a1a2〉y =
∑
b1,b2

Sa1b1Sa2b2 |b1b2〉x . (F8)

Here, the labels a1, a2, b1, b2 take values in 1, σ ,ψ , and S is
the (chiral) Ising S matrix. We have also used the fact that
S is real. The state |a1a2〉y is defined such that a topological
charge measurement performed around the cycle x yields
the measurement outcome a1a2. Similarly, one can define
|b1b2〉x.

Let us illustrate the calculation, using the transformation
of 1/

√
2(|11〉x + |ψψ̄〉x) to compute the first row of the

S matrix. The S transformation maps x to y, so the state
becomes
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1√
2
(|11〉y + |ψψ̄〉y) =

∑
b1b2

1√
2
(S1b1S1b2 + Sψb1Sψ̄b2

) |b1b2〉x

= 1

2
√

2

∑
b1,b2∈{1,ψ}

|b1b2〉x + 1√
2

|σ σ̄ 〉x

= 1
2

1√
2
(|11〉x + |ψψ̄〉x)+ 1

2
1√
2
(|ψ1〉x + |1ψ̄〉x)+ 1√

2
|σ σ̄ 〉x ,

(F9)

where we have used the known S matrix for the Ising
theory [1].

Following similar steps for the other states in the sub-
space in Eq. (117), we find

S = 1
2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠ , T =

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ .

(F10)

One can check that S and T satisfy S2 = 1 and (ST)3 = S2,
so they indeed form a representation of the modular group,
as expected. We also point out that although S is identical
to the S matrix of the (chiral) Ising TO, the T matrices are
different. The T matrix of the Ising theory reads

TIsing =
⎛
⎝1 0 0

0 e
iπ
8 0

0 0 −1

⎞
⎠ . (F11)

Similar results can be obtained for higher-genus surfaces.
This way, we find the modular data (i.e., unitary, finite-
dimensional representation of the mapping class group on
any closed oriented surfaces). Notably, the S and T matri-
ces in Eq. (F10) do not correspond to any (premodular)
anyon theory.

Lastly, we note that the S and T matrices in Eq. (F10)
can be derived in another way—using the identification in
Eq. (112). Namely, the Z2 TC ground states are projected
to the subspace invariant under the e ↔ m symmetry. The
modular matrices projected to this subspace are precisely
those in Eq. (F10). More generally, one can define the mod-
ular data for any anyon theory projected to an invariant
subspace under an anyon-permuting symmetry. In gen-
eral, the resulting modular data does not correspond to any
anyon theory. For example, by considering the Z2 anyon
permutation symmetry in the Spin(2n)1 TO, we find the
following modular matrices:

S = 1
2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠ , T =

⎛
⎝1 0 0

0 e
iπn
4 0

0 0 −1

⎞
⎠ .

(F12)

Again, none of them corresponds to any anyon theory.

APPENDIX G: STRUCTURE OF PREMODULAR
CATEGORIES

In this Appendix, we review the mathematical theory of
premodular categories. Let C be a premodular category and
T be its transparent center. By Degline’s theorem [128], T
must be isomorphic to the category of finite-dimensional
linear representations of some finite group G, denoted by
Rep(G, z). Here, z is an order-2 central element in G. Sim-
ple objects in Rep(G, z) are labeled by irreps π of G.
Fusion is given by the tensor product of representations.
The self statistics is determined by z:

θ(π) = χπ(z)
χπ(1)

= χπ(z)
dimπ

, (G1)

where χπ(g) = Trπ(g) is the character. Here, we use the
fact that π(1) = 1 so that χπ(1) = dimπ , i.e., the dimen-
sion of the representation. Notice that because z is central,
π(z) commutes with every π(g) for all g ∈ G. By Schur’s
lemma, π(z) must be proportional to the identity. Then
from z2 = 1 it follows that π(z)2 = 1, so θ(π) = ±1.

Physically, this means that the transparent center is iso-
morphic to the (bosonic or fermionic) gauge charges of
a G gauge theory. In other words, as explained below, a
premodular category can be uniquely associated with a
(bosonic or fermionic) SET phase.

First we consider the case when z = 1, so all parti-
cles in T are bosonic. We can think of T as the bosonic
gauge charge of some gauge group G, which can con-
dense to yield a modular category C̃ = C/T . Conversely, C
can be thought of as “G symmetrizing” (the mathematical
parlance is G equivariantizing) the theory C̃. By G sym-
metrizing, we mean projecting to the G-invariant states.
It is closely related to gauging the G symmetry, where
one first introduces G defects and then symmetrizes [92].
Whereas, in this case, one directly symmetrizes the anyon
theory without introducing G flux anyons.

Let us illustrate with an example. The Z2 TC topological
order has a Z2 anyonic symmetry that permutes the e and m
anyons. Fully gauging the Z2 symmetry yields the Ising �
Ising topological order. Instead of gauging, if the Z2 TC is
“symmetrized,” then we obtain a subset of Ising � Ising:
I ,ψ , ψ̄ ,ψψ̄ , and σ σ̄ . We can interpretψψ̄ as the Z2 gauge
charge, ψ and ψ̄ as the ψ anyon in the TC with even-odd
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gauge charges attached, and σ σ̄ is e + m (where + means
direct sum), since the two particles are exchanged under
the symmetry. They satisfy the fusion rule

σ σ̄ × σ σ̄ = I + ψ + ψ̄ + ψψ̄ . (G2)

This fusion rule can be understood from the identification
σ σ̄ ∼ e + m:

(e + m)× (e + m) = e × e + m × m + e × m + m × e.
(G3)

Naively, the result is 2(I + ψ). However, the Z2 symme-
try has a nontrivial action on each of the two-dimensional
fusion space, and hence they should each decompose into
a direct sum of Z2 even and odd representations. Sinceψψ̄
is the Z2 charge, 2I should be I + ψψ̄ , and ψ + ψ̄ for the
other term.

As expected, the symmetrized TC anyons forms a
premodular category C, with T = {I ,ψψ̄} = Rep(Z2, 1).
Condensing T in C returns the Z2 TC. These are precisely
the anyons in the decohered doubled Ising TO.

According to the general classification of symmetry-
enriched topological phases [92], another possibility is
that the symmetry fractionalizes on anyons even when no
anyons are permuted. To give a simple example, consider
the semion topological order C = {1, s}, where s × s = 1
and θ(s) = i. Physically, it can be realized as a chiral spin
liquid in certain spin-1/2 lattice models with full SO(3)
spin-rotation symmetry. Let us for now focus on a Z2
subgroup of SO(3), i.e., a π rotation. The semion carries
a half charge under the Z2 (a remanant of the spin-1/2
representation), which means fusing two semions yields
a Z2 charge b. Symmetrizing the semion TO, we find
the so-called Z(1)4 anyon theory {1, s, b, sb}, where b = s2,
with the transparent center T = {1, b}. This premodular
category describes the decohered Z4 TC considered in
Sec. III D 5.

For a more complicated example of symmetry fraction-
alization, we consider the D2 = Z2 × Z2 = {1, X , Y, Z}
subgroup of SO(3). For this symmetry group in a semion
TO, the semion transforms as a two-dimensional projective
representation of the Z2 × Z2 symmetry. In this represen-
tation, X , Y, and Z act as the Pauli matrices. After sym-
metrizing D2, the semion becomes a non-Abelian anyon
with d = 2, and satisfies the following fusion rule:

s × s = 1 + X + Y + Z, (G4)

where here, X , Y, and Z denote charged bosons of the
corresponding symmetry. In other words, they are the
three nontrivial one-dimensional representations of D2.
The fusion rules are identical to those of the representa-
tion category of the order-8 quaternion group Q8 (although
with different R symbols). Following Ref. [129], we denote
this category by Reps(Q8).

Interestingly, there are three other premodular cate-
gories with the same fusion rules and topological spins,
corresponding to the three other Z2 × Z2 projective repre-
sentations on the semion. We will collectively denote them
as Reps(D8), where D8 is the dihedral group of order 8. The
difference between the Reps(D8)’s and Reps(Q8) is that
the latter admits a (minimal) modular extension (defined
later), while the former do not. Equivalently, going back
to the semion SET, the Z2 × Z2 symmetry has a nontrivial
’t Hooft anomaly in each of the three Reps(D8) categories,
but for Reps(Q8) the symmetry is nonanomalous (as the
SET can be realized in 2D lattice models with on-site
symmetry group).

Now, we turn to the more general case with z �= 1. We
can still condense the maximal bosonic subcategory of
Rep(G, z), i.e., the subcategory of irreps π with π(z) = 1.
Let us analyze the structure of the remaining category.

First, we show that the maximal bosonic subcategory is
isomorphic to Rep(Gb, 1) with Gb = G/{1, z}. To see this,
first we show that an irrep π of G with π(z) = 1 is canoni-
cally isomorphic to a irrep of Gb. To this end, we choose an
arbitrary lifting for g̃ ∈ Gb to G, denoted as f (g̃). Notice
that f (g̃)f (h̃) is equal to f (g̃h̃) up to z. Then we define π̃
as

π̃(g̃) = π(f (g̃)). (G5)

Because π(z) = 1, π̃ is well defined and does not depend
on the lifting. We see that π̃ is a representation of Gb:

π̃(g̃)π̃(h̃) = π(f (g̃)f (h̃)) = π(f (g̃h̃)) = π̃(g̃h̃). (G6)

Furthermore, since π is irreducible, π̃ is too. Hence, we
have shown that each G irrep π is also canonically a Gb
irrep. Moreover, if π1 and π2 are distinct irreps [but both
satisfying π(z) = 1], so are π̃1 and π̃2.

Let us now prove that this captures all of the Gb irreps.
Through the orthogonality relation of characters:

∑
π

χπ(1)χ∗
π(z) =

∑
π

(dimπ)2θ(π) = 0, (G7)

which implies that

∑
θ(π)=1

(dimπ)2 = |G|
2

= |Gb|. (G8)

Therefore, we have found all the irreps of Gb, and this
subcategory with π(z) = 1 is identified as Rep(Gb, 1).

It is well known that the Rep(Gb, 1) category can be
condensed. More precisely, we can form a condensable
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algebra object

A =
⊕

π∈Rep(Gb,1)

(dimπ)π , (G9)

whose quantum dimension is dA = |Gb|. After condensa-
tion, the resulting category has total quantum dimension√|G|/√dA = √

2, which should be Z(1)2 .
Note that Gb and G fit into the following short exact

sequence:

1 → {1, z} → G → Gb → 1. (G10)

In other words, G is a central extension of Gb by Z2 =
{1, z}. The central extension is uniquely determined by
a 2-cocycle ω ∈ H2[Gb, Z2]. One should think of this
category as describing the symmetry of a fermionic sys-
tem, where the fundamental fermion carries a projective
representation of the symmetry group Gb, while bosonic
excitations carry linear representations of Gb. Once Gb and
the fermion parity are both gauged, Rep(G, z) emerges as
the subcategory of G gauge charges.

Physically, the premodular category can be obtained
from equivariantization of a fermionic modular tensor cat-
egory, or in other words, a fermionic TO enriched by the
Gb symmetry group. In this case, z should be identified
as the fermion parity symmetry, and the fermion carries a
projective representation of Gb whose projective class is
precisely ω.

Essentially, Degline’s theorem implies that all premodu-
lar categories arise as equivariantization of a finite unitary
symmetry of a bosonic or fermionic SET phase. This
also implies that a premodular category C can always be
embedded (as a subcategory) into a modular category. For
example, the modular category can always be taken as the
Drinfeld center Z(C).

An important question is whether the premodular cat-
egory admits a minimal modular extension. That is, a
modular category M, which contains C as a subcategory,
and has the smallest quantum dimension among all such
modular theories. In fact, the minimal modular extension
should satisfy DM = |G|DC . When T is bosonic (i.e.,
z = 1), the existence of a minimal modular extension is
deeply related to the question of whether the associated
SET phase obtained from condensing T has an ’t Hooft
anomaly. When the SET is nonanomalous, the minimal
modular extension is obtained by gauging the G symme-
try. When there is a nontrivial ’t Hooft anomaly, there
exists no minimal modular extension. An example is the
Reps(D8) mentioned above, which admits no minimal
modular extension due to the ’t Hooft anomaly of the
corresponding semion SET.

Similar results are expected to hold when z �= 1,
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Theorem A1. Let C be a premodular category, and B ⊂
C is a modular subcategory. Then C = B � B′, where B′ is
the commutant of B in C.
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