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Decoherence is a major obstacle to the preparation of topological order in noisy intermediate-scale
quantum devices. Here, we show that decoherence can also give rise to new types of topological order.
Specifically, we construct concrete examples by proliferating fermionic anyons in the toric code via local
quantum channels. The resulting mixed states retain long-range entanglement, which manifests in the
nonzero topological entanglement negativity, though the topological quantum memory is destroyed by
decoherence. By comparison with the gapless spin liquid in pure states, we show that the identified states
represent a novel intrinsic mixed-state topological order, which has no counterpart in pure states. Through
the lens of quantum anomalies of 1-form symmetries, we then provide general constructions of intrinsic
mixed-state topological order and reveal the existence of nonbosonic deconfined anyons as another key
feature of these novel phases. The extended meaning and characterization of deconfined excitations and
their statistics in mixed states are clarified. Moreover, when these deconfined anyons have nontrivial braid-
ing statistics, we prove that the mixed states cannot be prepared via finite-depth local quantum channels
from any bipartite separable states. We further demonstrate our construction using the decohered Kitaev
honeycomb model and the decohered double-semion model. In the latter case, a surprising scenario arises
where decoherence gives rise to additional types of deconfined anyons.
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I. INTRODUCTION

As long-range entangled (LRE) quantum matter, topo-
logically ordered phases have attracted extensive attention
in the past few decades [1–6]. Recently, there have been
a growing number of theoretical proposals [7–15] as well
as experimental evidence [16–21] showing that topological
order (TO) can be prepared in current many-body quan-
tum simulation platforms, such as superconducting-qubit
arrays, Rydberg-atom arrays, trapped-ion systems, etc. A
key feature of these noisy intermediate-scale quantum
(NISQ) devices is the inevitable presence of decoherence,
which renders the quantum state a mixed state [22]. Sub-
stantial progress has been made in diagnosing nontrivial
topological phases subject to decoherence [23–40]. In par-
ticular, the decoherence-induced breakdown of topological
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quantum memory in the toric code model is investigated
and is related to the transition in the mixed-state topologi-
cal order [31,33]. The topological order therein is inherited
from the pure-state counterpart, which is resistant to mod-
est decoherence. Above a certain critical error rate, the
long-range entanglement is destroyed.

We are interested in the following question: Other than
destroying the pure-state topological order, can decoher-
ence give rise to novel types of topological order that are
intrinsically mixed? The possibility of such an intriguing
scenario arises from new mechanisms of anyon prolifer-
ation provided by decoherence, distinct from anyon con-
densation in pure states [41–43]. As a starting point, we
explore such a possibility in the context of Z2 (toric code)
topological order, which comprises three types of anyon
excitations, e, m, and f = e× m, [44–51]. In pure states,
either e or m (both being self-bosons) can condense, lead-
ing to a topologically trivial Higgs/confined phase [52].
Correspondingly, proliferation of e and m anyons induced
by decoherence also destroys long-range entanglement. In
contrast, f anyons are self-fermions, and therefore they
cannot condense in a pure state; instead, a strong fluctu-
ation of f anyons typically leads to a gapless spin liquid,
which remains LRE. This motivates us to study the fate
of Z2 topological order when f anyons proliferate under
decoherence.
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Specifically, we study the behavior of the toric code
model [51] under local quantum channels that solely cre-
ate f anyons. The topological quantum memory degrades
to classical memory above a certain decoherence threshold,
aligning with previous studies. However, it turns out that
the mixed state still possesses nontrivial quantum topo-
logical order even in the absence of quantum memory.
To diagnose the mixed-state topological order, we employ
the topological entanglement negativity (TEN) [53–56],
which is a natural generalization of the topological entan-
glement entropy (TEE) [57,58]. The TEN has been utilized
to probe topological order in thermal equilibrium [59–62]
or under shallow-depth noise channels [31], effectively act-
ing as a faithful indicator of topological quantum memory
in those studied cases. However, we find that the TEN fails
to reflect topological quantum memory in this scenario and
remains unchanged across the transition. Nevertheless, the
nonzero TEN still points to the persistence of long-range
entanglement, a hallmark of topological order. Moreover,
the absence of topological quantum memory indicates that
the identified topological order has no pure-state coun-
terpart and, therefore, is termed “intrinsic mixed-state
topological order” here.

We then provide further understanding of this pecu-
liar result from the perspective of quantum anomalies.
Crucially, the noisy channel proliferating f anyons pre-
serves an anomalous 1-form symmetry generated by f
anyons [63–65]. Through the anomalous 1-form symme-
try, we show that the intrinsic mixed-state TO in the deco-
hered toric code supports deconfined fermionic anyons,
with a detailed explanation of the extended meaning of
deconfinement and fermionic statistics in mixed states.
We generally prove that mixed states with anomalous 1-
form symmetries must be LRE. Moreover, we show that
when the anomalous 1-form symmetry is generated by
anyons with nontrivial braiding statistics, any two com-
plementary parts of the mixed state are LRE (for arbi-
trary bipartition), generalizing the conjecture “mixed-state
anomaly ⇒ multipartite nonseparability” in Ref. [66],
which focuses on 0-form symmetries. With this perspec-
tive, our construction can be generalized to obtain other
intrinsic mixed-state TOs, characterized by deconfined
anyons with nontrivial statistics. We note that Secs. III and
IV B have been added after the initial version of our work
appeared on arXiv. Meanwhile, Refs. [67,68] appeared,
which study the mixed-state TO from the perspective of
anomalous 1-form symmetries. The discussion regarding
the nonmodular-anyon theory in Sec. IV B is inspired by
these works.

After introducing the general construction, we give
two more examples of intrinsic mixed-state TOs, the
decohered Kitaev honeycomb model and the decohered
double-semion model. In the latter example, we find more
surprising features in mixed-state TO. In addition to peel-
ing off anyons in the original TO, decoherence can even

give birth to new types of deconfined anyons, which leads
to a nonmodular anyon theory in our case.

The rest of the paper is organized as follows. In Sec. II,
we construct an intrinsic mixed-state TO by proliferat-
ing f anyons in the toric code and reveal its properties
through investigations of information quantities, includ-
ing the coherent information and the TEN. We also discuss
similarities and disparities to the gapless spin liquid phase
in pure states. In Sec. III, we discuss general aspects of
intrinsic mixed-state from the perspective of 1-form sym-
metry anomalies and deconfined excitations. In Sec. IV, we
generalize our construction of mixed-state quantum TO to
the decohered Kitaev honeycomb model and the decohered
double-semion model. We conclude with a discussion in
Sec. V.

II. DECOHERED TORIC CODE AS INTRINSIC
MIXED-STATE TO

A. The model

We start with the two dimensional (2D) Z2 toric code
model on a square lattice:

HTC = −
∑

v

Av −
∑

p

Bp , Av ≡
∏

i∈v
Xi, Bp ≡

∏

i∈p

Zi,

where Xi and Zi are Pauli matrices. The ground states are
fourfold degenerate and can be used to encode two log-
ical qubits, amenable to fault-tolerant quantum informa-
tion processing. The tolerance of the topological quantum
memory against local phase errors and bit-flip errors has
been investigated in Refs. [23,31,33], where errors are
modeled as local quantum channels, N z and N x,

N x =
∏

i

N x
i ,N x

i [·] ≡ (1− px) · +pxXi · Xi,

N z =
∏

i

N z
i ,N z

i [·] ≡ (1− pz) · +pzZi · Zi.
(1)

px and pz are the error rates of bit-flip and phase errors,
respectively. Since these channels incoherently create e
and m anyons, respectively, we denote the corresponding
error-corrupted states as ρe and ρm. It has been shown
that above the error threshold, the proliferation of either
bosonic anyon (e or m) would degrade the quantum mem-
ory to classical memory, accompanied by a sudden drop
of the TEN from log 2 to 0. This motivates us to investi-
gate the incoherent proliferation of the fermionic f anyons
of the Z2 topological order, which can be realized by the
following two-qubit quantum channel:

N f =
∏

i

N f
i , N f

i [·] := (1− pf ) · +pf ZiXi+δ ·Xi+δZi,

(2)
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FIG. 1. (a) Av and Bp . (b) The Kraus operator ZiXi+δ of the
quantum channel N f

i creates a pair of f anyons, labeled by
orange ellipses. (c) An example of an error string C (the blue
line) and W f

C =
∏

i∈C ZiXi+δ . f anyons are created at the ends
of C. (d) A noncontractible-loop operator Wγ̃y along the y direc-
tion. (e) A typical loop configuration g = gxgz , with gx colored
in red and gz in blue. The dashed (solid) lines represent segments
in which gx and gz coincide (do not coincide)—up to a shift by
δ. lg = 12 in this example. (f) An example of a tensionless loop
configuration, i.e., lg = 0. (g) The bipartition of a cylinder. (h),(i)
Two methods of bipartition.

where δ = ( 1
2 ,− 1

2 ) (the lattice constant is taken to be 1)
and 0 < pf <

1
2 is the error rate. In this way, the ground

state ρ0 is turned into a mixed state, ρf = N f [ρ0]. As
depicted in Fig. 1(b), N f exclusively creates f anyons. In
contrast, certain other types of errors, such as the Pauli-
Y errors, locally create pairs of f anyons as well but
globally they also produce e and m anyons, resulting in
completely different outcomes. In the following sections,
we demonstrate that this simple model surprisingly realizes
an exotic intrinsic mixed-state topological order through
analytical exact investigations of its topological memory
and topological entanglement negativity.

B. Breakdown of quantum memory

Under the N f channel, the mixed state undergoes an
error-induced transition corresponding to the breakdown
of quantum memory, similar to the case with bit-flip and
phase errors. Such transitions can be probed by informa-
tion quantities nonlinear in the density matrix, such as
the coherent information Ic = S(ρf )− S(ρRf ) [31,69,70],
where S is the von Neumann entropy. R denotes reference
qubits purifying the initial state ρ0, which is taken to be the
maximally mixed state in the code space,

ρ0 = 1
4

∏

v

1+ Av
2

∏

p

1+ Bp

2
= trR(|�〉〈�|), (3)

and ρRf = IR ⊗N f [|�〉〈�|] is the decohered density
matrix. The coherent information measures the amount of
information transmitted by the noisy channel N or, in other
words, it diagnoses the ability to restore the information
encoded in the code space via error correction. Due to
the subadditivity of the von Neumann entropy, the coher-
ent information is bounded by −S(ρ0) ≤ Ic ≤ S(ρ0) and
the sufficient and necessary condition for the existence of
perfect quantum error correction is that Ic = S(ρ0) [69].
The error threshold pc corresponding to a sudden drop of
Ic captures the breakdown of quantum memory and this
error-rate threshold is an intrinsic threshold, which means
that for error rate p > pc, there is no decoding algorithm to
recover the encoded quantum information.

In our model, we find that Ic can be exactly mapped
to the free-energy cost of noncontractible defect lines of
the random-bond Ising model (RBIM) along the Nishimori
line [71], using the replica trick:

Ic = − lim
n→1

∂

∂n
Tr(ρn

f )+ lim
n→1

∂

∂n
Tr(ρn

Rf )

= 2 log 2− log

∑
dx ,dy=0,1 ZRBIM

dx ,dy

ZRBIM
00

= 2 log 2− log

⎡

⎣
∑

dx ,dy=0,1

e−�Fdx ,dy

⎤

⎦, (4)

where �Fdx ,dy is the excess free energy with the insertion
of a noncontractible defect line and dx and dy count the
number of noncontractible defect lines in the x and y direc-
tions, respectively. The derivation of the above mapping of
Ic can be found in Appendix A 1.

For small p , the RBIM is in the ferromagnetic (FM)
phase, and the excess free energy of a defect line is exten-
sive, �F{dx ,dy }
={0,0} ∼ O(L), which leads to Ic = 2 log 2.
At a critical error rate pc ≈ 0.109, the RBIM under-
goes a ferromagnet-to-paramagnet phase transition, with
an abrupt drop of coherent information, which determines
the threshold at which the topological quantum memory is
damaged beyond recovery. Nevertheless, we note that ρf
still retains classical memory for pf > pc. Suppose that the
initial state ρ0 is in an eigenspace of the logical operators
Wγ̃x,y =

∏
i∈γ̃x,y

XiZi+δ , where γ̃x and γ̃y are two noncon-
tractible loops on the dual lattice. Then, ρf always stays
in the same eigenspace under the quantum channel, as
[Wγ̃x,y , ZiXi+δ] = 0.

C. Topological entanglement negativity

Based on the above analysis, it may seem that ρf closely
resembles ρe and ρm. However, surprisingly, we demon-
strate below that even when the quantum memory breaks
down for pf > pc, ρf retains LRE with a nonzero TEN,
indicating the emergence of a distinct topological order.
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To evaluate the entanglement negativity of ρf and its
scaling, we take the cylinder geometry with the biparti-
tion A ∪ Ā as depicted in Fig. 1(g). Then, the logarithmic
negativity is defined as

εA(ρf ) ≡ log ||ρTA
f ||1 = εĀ(ρf ), (5)

where TA denotes the partial transpose of ρf in sub-
region A and || · ||1 represents the trace norm. As an
entanglement monotone, the logarithmic negativity is com-
monly used to quantify quantum entanglement in mixed
states, excluding the contribution from classical correlation
[72–75]. As such, it is considered a natural generalization
of entanglement entropy in pure states.

For convenience, we take the initial state ρ0 to be the
maximally mixed state in the code space given in Eq. (3).
We denote the groups generated by {Av}({Bp}) as Gx(z):

Gx ≡ 〈{Av}〉, Gz ≡ 〈{Bp}〉. (6)

Each group element gx(z) corresponds to a loop configu-
ration on the dual lattice (original lattice), as shown in
Figs. 1(e) and 1(f). Thus, ρ0 can be represented by an
equal-weight expansion of loop configurations:

ρ0 = 1
2N

∑

gx∈Gx

∑

gz∈Gz

gxgz = 1
2N

∑

g∈G≡Gx×Gz

g. (7)

The effect of N f is to introduce loop tension. Specifically,
for a given loop g = gxgz, N f assigns a weight 1− 2pf to
each segment where gx and gz do not coincide (up to a shift
by δ). Consequently, we have

ρf = N f [ρ0] = 1
2N

∑

g∈G

(1− 2pf )
lg g, (8)

where lg is the length of segments where gx and gz do not
coincide. In Fig. 1(e), we illustrate how to count such seg-
ments and in Fig. 1(f), we give an example of a tensionless
loop.

We now take the partial transpose for subregion A. We
denote g = gAgĀ, where gA(Ā) is the restriction of operator
g to subregion A(Ā),

ρ
TA
f =

1
2N

∑

g∈G

(1− 2pf )
lg yA(g)g, (9)

and yA(g) = 1(−1) when gxA and gzA commute (anticom-
mute).

As shown in Figs. 1(g)–1(i), there are two possible
choices of translation-invariant entanglement cut, which
lead to slightly different results with regard to the TEN.

Remarkably, for the bipartition in Fig. 1(h), the final result
of negativity is rather simple and is independent of pf :

εA(ρf ) = L log 2− log 2, (10)

where L is the length of the boundary between A and Ā.
For the bipartition in Fig. 1(i), however, the calculation
of the negativity is much harder for general pf . Here, we
only show the results for the case with maximal decoher-
ence, pf = 1

2 , which is expected to reflect general features
of the mixed states for pf > pc. In this case, ρf becomes
the maximally mixed state, with Wp ≡ Ap−δBp = 1,∀p:

ρf = 1
2N/2+1

∏

p

1+Wp

2
. (11)

It turns out that the negativity exhibits an unusual depen-
dence on the parity of L:

εA(ρf ) =

⎧
⎪⎪⎨

⎪⎪⎩

L
2

log 2− log 2, if L is even,

L
2

log 2− log 2
2

, if L is odd.
(12)

In all the above results, the entanglement negativity satis-
fies an area law and has an O(1) subleading term, known
as the topological entanglement negativity, which is a gen-
eralization of the TEE. A nonzero value of the TEN signals
nontrivial quantum TO, as it arises solely from long-range
entanglement. For example, TEN = log 2 for the toric code
ground state. Hence, it has been used to diagnose topologi-
cal order in both finite-temperature systems [60] and states
subject to local errors [31]. Notably, in our model, the TEN
remains nonzero even if quantum memory is gone, which
is in sharp contrast to the case with single-qubit X or Z
errors.

The dependence of the TEN on the boundary size for
the second type of bipartition seems a bit puzzling. How-
ever, this phenomenon also shows up in some ground-state
topological order. Namely, the TEE or TEN also exhibits
a similar even-odd dependence on the system size for
Z2 topological order enriched by translation symmetry
through weak symmetry breaking, with typical examples
including the Wen-plaquette model and the Abelian phase
of the Kitaev honeycomb model [76,77]. In these cases,
it is well known that the ground-state degeneracy on a
torus also exhibits a similar dependence on the system
size. Although there is little discussion in the literature
about how weak symmetry breaking affects entanglement
properties, it is straightforward to check that the sublead-
ing term of bipartite entanglement entropy on a cylinder
also depends on the parity of the boundary size in these
models. Based on this observation, we establish a con-
nection between the entanglement properties of ρf and
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ground-state Z2 topological order enriched by translation
symmetry in Appendix A 4.

We emphasize that the persistence of long-range entan-
glement signifies genuine quantum TO, which distin-
guishes ρf from the so-called classical TO, a concept
raised in the study of finite-temperature TO [60,78–80].
States with classical TO have topological classical memory
as well but zero TEN. One typical example is the low-
temperature phase of the three-dimensional (3D) toric code
model. In this sense, ρe and ρm (above the error threshold)
also have classical TO. ρf is qualitatively different from
these known examples.

D. Robustness of the intrinsic mixed-state TO

Although in our construction we need to use specific
two-qubit channels that look a little unconventional, ρf
represents a new type of topologically ordered phase,
instead of a fine-tuned exception. We can consider the
case in which single-qubit phase errors are also present:
ρf ,e = N z[ρf ], with error rate pz. By mapping to two
decoupled RBIMs, we obtain the phase diagram in Fig. 2.
For small pz, ρf ,e stays in the same phase as ρf , while for
pz > pc ≈ 0.109, the state undergoes another transition to
the trivial phase, with no memory and zero TEN (for more
details, see Appendix A 5).

FIG. 2. The phase diagram of the toric code model subjected
to both two-qubit errors and single-qubit phase errors. The prop-
erties of each phase (including topological memory and the
TEN) and the corresponding phases in the two RBIMs (with
Ising variables σ and τ , respectively) are indicated in the phase
diagram.

E. Comparison with anyon condensation and gapless
spin liquid

From the preceding analysis, we see that although
ρf only exhibits classical memory (for pf > pc), it is
fundamentally distinct from ρe and ρm. To gain deeper
insight into this counterintuitive result, we draw compar-
isons between the error-induced anyon proliferation and
anyon condensation in pure states. Instead of applying
local quantum channels, we analyze the case in which the
Xi, Zi, ZiXi+δ terms are directly introduced into the toric
code Hamiltonian:

H = HTC −
∑

i

hxXi − hzZi − hxzZiXi+δ . (13)

The ground-state phase diagram for hxz = 0 has been
extensively studied [52,81–84]. For sufficiently large hz or
hx, it leads to the condensation of e or m anyons, respec-
tively, resulting in the destruction of long-range entangle-
ment. Analogously, the local Z and X errors induce e- and
m-anyon proliferation in an incoherent manner, which also
destroys the long-range entanglement. Despite the similar-
ities between decoherence-induced anyon proliferation and
anyon condensation, there are still noteworthy distinctions.
In mixed states, incoherent proliferation of either e or m
does not completely trivialize the phase but, rather, leads
to classical TO. Contrarily, in pure states, condensation of
either e or m already leads to the trivial Higgs or confined
phase.

The distinction becomes much more significant for f
anyons. As fermions, they cannot condense in pure states.
Then what happens when we turn on fluctuations of f
anyons (hzx 
= 0)? Surprisingly, at hz = hx = 0, this model
can be exactly solved via fermionization [85]. As we show
in Appendix B, when hxz is sufficiently large (hx,z = 0),
corresponding to large fluctuations of f particles, the sys-
tem enters a gapless spin liquid phase, where f particles
form a p − wave superconductor with conic dispersion,
similar to the gapless Kitaev spin liquid [77]. The intrinsic
mixed-state TO proposed in this paper has many features
in common with the gapless spin liquid. First, they are both
obtained by proliferating f anyons in the Z2 TO and, as a
result, neither of them has quantum memory. For the gap-
less spin liquid, this is due to the absence of a spectrum
gap, so there is no well-defined topological degeneracy.
Second, despite the lack of quantum memory, they are both
LRE and are thus nontrivial phases of matter. In Sec. III,
we will uncover a deeper reason for their LRE nature
from the perspective of anomalies. However, there are also
notable differences between ρf and the gapless spin liq-
uid phase. Gapless phases typically exhibit critical forms
of behavior, including algebraically decaying correlation
functions and subleading logarithmic corner contributions
to entanglement entropy or negativity [86–88]. Contrarily,
since ρf is obtained by applying local quantum channels
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TABLE I. A comparison between the gapless spin liquid and
the intrinsic mixed-state TO (ρf ). For the properties listed in the
last two rows, see Sec. III.

Gapless spin
liquid

Intrinsic
mixed-state TO

Quantum memory × ×
Long-range

entanglement

√ √

Correlation of local
operators

Power-law
correlation

Short-range
correlation

Anomalous 1-form
symmetry

√ √

Deconfined fermions
√ √

on a gapped topological order, no power-law correlation
can be generated, i.e., ρf exhibits short-range correlation
for all local operators, which is a prerequisite for any topo-
logical order. Moreover, as we have seen, the subleading
term in the entanglement negativity εA(ρf ) is always O(1)
for ρf . In this sense, ρf also retains certain essential prop-
erties of gapped topological order. Therefore, ρf indeed
represents a new type of topological order that is only
possible in mixed states. The similarities and differences
between gapless spin liquid and intrinsic mixed-state TOs
are summarized in Table I.

III. GENERALITIES: ANOMALOUS 1-FORM
SYMMETRY, NONTRIVIAL STATISTICS, AND

LONG-RANGE ENTANGLEMENT

The long-range entanglement of the gapless spin liq-
uid and the intrinsic mixed-state TO are both related to
an anomalous 1-form symmetry, which is generated by the
following loop operators:

W f
γ̃
=
∏

i∈γ̃
XiZi+δ , (14)

where γ̃ denotes an arbitrary loop on the dual lattice
[63,64]. For noncontractible loops γ̃ = γ̃x,y , W f

γ̃
are the

logical operators responsible for the classical memory of
ρf [see Fig. 1(d)]. These loop operators generate a symme-
try of both models because [W f

γ̃
, HTC] = [W f

γ̃
, ZiXi+δ] =

0. In particular, we have W f
γ̃
ρf = ρf [89], which is known

as the strong-symmetry condition for the mixed state
[28,34,90,91]. For an open string C̃, W f

C̃
=∏i∈C̃ XiZi+δ

creates two f anyons at the ends of the string, so they
are referred to as f strings and the 1-form symmetry is
said to be generated by f anyons. The nontrivial statistics
of f anyons indicate an anomaly of the 1-form symmetry
[64]. We show below that, as a consequence of the anoma-
lous strong 1-form symmetry, the mixed state ρf still has
deconfined fermionic excitations.

The above statement might be confusing at first sight.
Since the f anyons already proliferate in ρf , what, then,
are the deconfined fermions? Perhaps the easiest way
to resolve this apparent paradox is to vectorize ρ in
the double Hilbert space: ρ =∑mn ρmn|m〉〈n| → |ρ〉〉 =∑

mn ρmn|m〉+ ⊗ |n〉−. For concreteness, we choose the
basis {|m〉} as the eigenstates of Zi. Then, |ρ0〉〉 corresponds
to two copies of toric code ground states, with superse-
lection sectors {1, e+, m+, f+} × {1, e−, m−, f−}. The inco-
herent proliferation of f corresponds to condensation of
f+f− in this picture, which leaves f+ as a deconfined exci-
tation, though it should now be identified with f− due to
the condensation of f+f− [32]. Do these f+ anyons corre-
spond to physical excitation in the original Hilbert space?
Although the naive way to create f+ anyons ρf → W f

C̃
ρ

is not a legitimate physical process, they can be created
using the unitary process ρf → ρ ′f = UC̃ρf U†

C̃
, with UC̃ =

(I + iW f
C̃
)/
√

2. Then, f+/− anyons appear in the interfer-
ence terms. In this sense, f anyons (we omit the “+”
hereafter) remain physically meaningful excitations.

We now address another subtle question: What does
“deconfinement” really mean in mixed states under noisy
channels? Conventionally, it means that the energy cost
does not grow indefinitely by separating individual topo-
logical excitations far apart. Here, this definition does not
make sense, because the system is no longer governed
by a Hamiltonian. Therefore, we propose the following
definition of deconfined excitations for generic mixed
states.

Definition 1. Given a density matrix ρ, a pair of decon-
fined excitations are said to be created at locations i and j in
the unitary process ρ → UρU† if and only if the following
two conditions are satisfied:

(1) The excitations cannot be created locally and indi-
vidually. In other words, U cannot be any unitary
operator supported near i and j . Typically, U is
supported on an open string with endpoints i and j .

(2) For any local operator O the support of which
is away from i and j , tr(ρO) = tr(UρU†O). This
means that the change can only be detected near i
and j .

Clearly, the above definition is consistent with the con-
ventional notion of deconfined excitations and serves as a
faithful and natural generalization to open quantum sys-
tems. Next, we illustrate that f anyons (we omit the
“+” hereafter) are indeed deconfined excitations accord-
ing to this definition, created by the unitary operator
UC̃. The second condition can easily be verified using
the strong 1-form symmetry. We denote the support of
O as �(O) for convenience, which we assume to be
away from i and j . If �(O) ∩ C̃ = ∅, then tr(UC̃ρU†

C̃
O) =
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tr(ρU†
C̃

OUC̃) = tr(ρO); if �(O) ∩ C̃ 
= ∅, we can always

find another open string C̃′, such that C̃ ∪ C̃′ is a con-
tractible loop and�(O) ∩ C̃′ = ∅. Using the strong 1-form
symmetry U†

C̃′UC̃ρf = ρf , it is straightforward to obtain

tr(UC̃ρU†
C̃

O) = tr(UC̃′ρU†
C̃′O) = tr(ρO). The first condi-

tion follows from the fermionic statistics of the f anyons
[92] (for more details, see also the proof of Theorem 1).

Are the fermionic statistics well defined for mixed
states? We give an affirmative answer with the following
microscopic method of detection (for an illustration, see
Fig. 3): (a) create two f anyons at locations i and j using
W f

ji = W f
jk W f

ki ; (b) move the f anyon at i to location l using

W f
li = W f

lk W f
ki ; (c) move the other f anyon from j to i

using W f
ij = Wf †

ji ; (d) move the f anyon at l to location j
using W f

jl = W f
jk W f

kl ; (e) annihilate the two f anyons using

W f
ij . In steps (b)–(d), the locations of the two f anyons

are exchanged, which results in a phase W f
jl W f

ij W f
li =

θ(f ) = −1. To turn this statistical phase into an observ-
able effect, we can use the same protocol as in Ref. [17].
That is, we introduce an ancilla qubit and prepare the initial
state |+〉〈+| ⊗ ρf , where |+〉 ≡ (|0〉 + |1〉)/√2. Then we
can use the ancilla qubit to control the exchange process.
Namely, we perform steps (a)–(e) when the ancilla is in
state |1〉 and do nothing otherwise. This controlled process
can be performed using the unitary operator V = |0〉〈0| ⊗
I + |1〉〈1| ⊗W f

ij W f
jl W f

ij W f
li W f

ji . Then, the statistical phase
will manifest as the rotation of the ancilla:

V
(|+〉〈+| ⊗ ρf

)
V†=|−〉〈−| ⊗ ρf , (15)

(a)

(c)

(b)

(d)

FIG. 3. (a) The exchange statistics of identical Abelian anyons
can be defined using the open anyon strings Wki, Wkj , Wlk. In
defining open anyon strings, we require that two short strings can
combine into a longer string: Wi3i2 Wi2i1 = Wi3i1 . (b) A closed a
string that intersects ∂A at i and j . (c) The partitioning of Wa

γ into
three parts: the open string WiAjA and WjBiB supported completely
on regions A and B and the middle red and orange segments WAB
straddling between A and B. (d) The anyon strings of a and a’.

where |−〉 = (|0〉 − |1〉)/√2. The fermionic statistics of
emergent deconfined excitations are the most striking
observable effect of the intrinsic mixed-state TO. Here,
they are guaranteed by the anomalous strong 1-form sym-
metry.

In the double space, e+e− also remains a deconfined
excitation, which has mutual semion statistics with f+. Sur-
prisingly, these braiding statistics can also be (partially)
detected in the physical Hilbert space, as we demonstrate
below. First, note that ρf preserves a weak 1-form symme-
try generated by e anyons, W e

γ ρf W e
γ = ρ for a contractible

closed e string W e
γ [28]. Then, based on Definition 1,

deconfined excitations can be created using an open e
string, ρf → ρe

f = W e
Cρf W e

C. Second, introduce an ancilla
qubit and prepare the initial state |+〉〈+| ⊗ ρe

f . Then use
the ancilla qubit to control the braiding process: if the
ancilla is in |1〉, we create two f anyons and drag one
of them along a loop l enclosing the e anyon, and finally
annihilate with the other f anyon, as illustrated in Fig. 4;
if the ancilla is in |0〉, we do nothing. This controlled pro-
cess can be performed using the unitary gate V = |0〉〈0| ⊗
I + |1〉〈1| ⊗W f

γ̃
, where W f

γ̃
=∏i∈loop γ̃ XiZi+δ . Then, the

braiding statistics can be detected by rotation of the ancilla
qubit:

V
(
|+〉〈+| ⊗ ρe

f

)
V†=|−〉〈−| ⊗ ρe

f . (16)

Stated more formally, the braiding statistics reflect the
mixed anomaly between the weak 1-form symmetry (gen-
erated by e) and the strong 1-form symmetry (generated by
f ) [93].

One key distinction compared to the usual anyon braid-
ing is that the f -e braiding here is only one-way defined
under the above protocol. Namely, the statistical phase can
only be detected by moving f around e (with the move-
ment of f controlled by the ancilla) but not the other
way around [94]. This directly follows from the fact that
while f anyons generate a strong 1-form symmetry, e
anyons only generate a weak 1-form symmetry. There-
fore, a finer characterization of deconfined excitations
than Definition 1 is needed and we call the former type
strongly deconfined and the latter type weakly deconfined.
As demonstrated above, strongly deconfined anyons are
allowed to form coherent superposition states and their
statistics can be detected from the interference effects.
Weakly deconfined anyons, on the other hand, always have
trivial exchange and braiding statistics among themselves
and can have one-way braiding statistics with strongly
deconfined anyons. In the rest of the paper, we mainly
focus on strongly deconfined anyons.

Using the perspective of anomalies, we can general-
ize our construction to obtain other intrinsic mixed-state
TOs [67,68]. Given a TO with anyon content A, one can
incoherently proliferate a subset B ⊂ A of anyons using a
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FIG. 4. Braiding between f and e. The quantum channel N f

does not affect the braiding statistics, because it preserves the
weak 1-form symmetry generated by e and the strong 1-form
symmetry generated by f .

noisy channel, taking the Kraus operator to be the short-
est string of anyons in B. If there exists some Abelian
anyon a ∈ A that has trivial braiding with all anyons in B,
then closed a strings commute with the Kraus operators.
Therefore, the a anyons generate a strong 1-form sym-
metry [95]. Based on the previous discussion, this means
that they remain deconfined excitations with well-defined
statistics. When they have nontrivial statistics, θ(a) 
= 1,
then the 1-form symmetry is anomalous. For example,
in the model discussed above, A = {1, e, m, f },B = {f },
and a = f because fermions have trivial full braiding with
themselves.

The existence of nonbosonic strongly deconfined exci-
tation can be viewed as another diagnosis of nontrivial
mixed-state TOs, complementary to the TEN. Indeed, we
show below that this property generically implies the
mixed state to be LRE, without explicit calculation of
negativity.

Theorem 1. Consider a 2D state ρ with anomalous
strong 1-form symmetry generated by some Abelian anyon
a with θ(a) 
= 1, i.e., Wa

γ ρ = ρ, where the Wa
γ are closed a

strings supported on any contractible loop γ . Then, ρ can-
not be prepared using a finite-depth local channel (FDLC)
from any fully separable state:

ρ 
= NFDLC

[
∑

λ

pλ
⊗

site i

|ψλ
i 〉〈ψλ

i |
]
(pλ > 0). (17)

Before the proof, we give some remarks regarding the
above theorem.

(1) Following Refs. [96,97], Eq. (17) can be viewed
as the definition of long-range entanglement for
generic mixed states. Thus the above theorem tells
us that anomalous strong 1-form symmetries must
lead to nontrivial mixed-state quantum TOs.

(2) Typically, the 1-form symmetry includes genera-
tors supported on noncontractible loops. However,
here we only require the symmetry condition for
contractible ones, enabling a much wider range of
applications. For example, for the construction of
intrinsic mixed-state TOs discussed above, the pre-
decoherence state can be taken to be any state in the
ground-state subspace. The above theorem can also
be applied to topologically trivial spatial manifolds
such as a 2-sphere.

(3) Similar to the discussion before Eq. (15), the
anomaly manifests as the algebra of open-string
operators:

Wa
i3i2Wa

i2i1 = Wa
i3i1 , W†

i1i2 = Wi2i1 ,

Wa
kj Wa

lkWa
km = θ(a)Wa

kmWa
lkWa

kj .
(18)

Essentially, the nontrivial statistics θ(a) 
= 1 of a are
all we need in the following proof.

(4) Notably, the condition that we impose automat-
ically includes the case of a mixed anomaly
between strong 1-form symmetries, which arises
when two strongly deconfined Abelian anyons a and
a′ have nontrivial mutual statistics, Bθ (a, a′) 
= 1
(Bθ (a, a′) is the statistical phase from a full braid-
ing between a and a′). Using the relation Bθ (a, a′) =
θ(aa′)/(θ(a)θ(a′)), the mixed anomaly implies that
at least one of a, a′, and aa′ has nontrivial self-
statistics θ 
= 1. Thus we do not need to consider
mutual statistics separately.

(5) To prove the theorem, we make an additional
assumption that Wa

γ can be expressed using a finite-
depth local unitary circuit (FDLUC), which is usu-
ally the case for Abelian anyon a.

Proof. Suppose, by contradiction, that ρ = NFDLC[
∑

λ

pλ
⊗

site i |ψλ
i 〉〈ψλ

i |]. Recall that a generic FDLC N can
be constructed in three steps: first, introduce auxiliary
degrees of freedom on each site; second, apply an FDLUC
on the system and the auxiliary degrees of freedom; and
third, trace out the added degrees of freedom. This can
be written as NFDLC[ρ0] = trE[USEρ0

⊗
site i |ei〉〈ei|U†

SE],
where USE is a FDLUC. If ρ0 is a fully separable state,
then ρ = NFDLC[ρ0] is of the form ρ =∑λ pλtrE[USE ⊗i

|φλi 〉〈φλi |U†
SE], where |φi〉 ≡ |ψλ

i 〉 ⊗ |eλi 〉. Then, each pure
state USE

⊗
i |φi〉 must be symmetric: Wa

γUSE
⊗

i |φi〉 =
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USE
⊗

i |φi〉. Equivalently, W̃a
γ = U†

SEWa
γUSE is a symme-

try of the product state
⊗

i |φi〉. Crucially, the restriction of
W̃a to open strings W̃a

i1i2 ≡ U†
SEWa

i1i2USE satisfies the same
algebra, given in Eq. (18), as Wa. As we show below, this
will lead to a contradiction.

Since any contractible-loop operator W̃a
γ is a symme-

try, an open string W̃a
i1i2 can only change the state near

the end of the string: W̃i1i2
⊗

i |φi〉 = Ai1Bi2
⊗

i |φi〉, where
Ai1 and Bi2 are unitary operators supported near i1 and i2,
respectively. From the algebraic relation given in Eq. (18),

W̃a
kj W̃a

lm = θ(a)W̃a
kmW̃a

lj . (19)

By applying both sides of the equation to
⊗

i |φi〉,
we obtain Ak ⊗ Bj ⊗ Al ⊗ Bm

⊗
i |φi〉 = θ(a)Ak ⊗ Bm ⊗

Al ⊗ Bj
⊗

i |φj 〉, which leads to a contradiction when
θ(a) 
= 1. �

The above proof shows that nontrivial TOs are guaran-
teed by the existence of nonbosonic deconfined excitation
a, even for mixed states. Furthermore, when a is neither
bosonic nor fermionic, θ(a) 
= ±1, or when a has non-
trivial mutual statistics with another strongly deconfined
anyon a′, then an even stronger conclusion can be proved.

Theorem 2. Consider a 2D state ρ with an anoma-
lous strong 1-form symmetry generated by Abelian anyons
a and a′, with nontrivial braiding statistics Bθ (a, a′) 
= 1
(with the special case a = a′ included). Then, for any
bipartition A ∪ B with linear size LA, LB →∞ in the ther-
modynamic limit, ρ cannot be prepared using an FDLC
from any bipartite separable state:

ρ 
= NFDLC[
∑

λ

pλ|ψλ
A〉〈ψλ

A | ⊗ |ψλ
B〉〈ψλ

B |]. (20)

Again, we only need the symmetry condition Wa
γ ρ =

ρ, Wa′
γ ρ = ρ for contractible-loop operators Wa

γ , Wa′
γ ,

which we assume to be FDLUCs.

Proof. Suppose, by contradiction, that ρ = NFDLC[
∑

λ

pλ|ψλ
A〉〈ψλ

A | ⊗ |ψλ
B〉〈ψλ

B |]. Following the same steps as in
the proof of Theorem 1, we have

W̃a
γ |φA〉 ⊗ |φB〉 = |φA〉 ⊗ |φB〉, (21)

with the bipartite product state |φA〉 ⊗ |φB〉 and the 1-form
symmetry generator W̃a

γ defined in an enlarged Hilbert
space HS ⊗HE . Next, we take a loop γ intersecting the
boundary between A and B at locations i and j , with the
corresponding closed a string W̃a

γ . We extract a small
segment of W̃a

γ near the intersection points, denoted by
W̃AB, such that W̃a

γ can be written as W̃a
γ = W̃a

iAjAW̃a
jBiBW̃AB,

where W̃a
iAjA , W̃a

jBiB are open a strings completely supported
on A and B, respectively. Then, we have

W̃AB|φA〉 ⊗ |φB〉 = W̃a†
iAjA |φA〉 ⊗ W̃a†

jBiB |φB〉
⇒ trB∪σij [|φA〉〈φA| ⊗ |φB〉〈φB|]
= trB∪σij [W̃a†

iAjA |φA〉〈φA|W̃a
iAjA ⊗ |φB〉〈φB|]

⇒ trσij [|φA〉〈φA|] = trσij [W̃a†
iAjA |φA〉〈φA|W̃a

iAjA], (22)

where σij denotes the union of the two red segments in
Fig. 3(c). Due to the unitary equivalence of purification
[98],

∃uσij supported on σij , such that uσij |φA〉 = W̃a†
iAjA |φA〉

⇒ u†
σij

W̃a
jAiA |φA〉 = |φA〉. (23)

Physically, this means that a pair of a and its antipar-
ticle are created in the bulk of A, moving apart toward
∂A, and they get eliminated on the boundary (by a uni-
tary process with local support). Below, we show that such
a process contradicts the anyonic statistics of a [99,100].
Now consider the closed a′ string Wa′

γ ′ , which intersects the
boundary ∂A at i′ and j ′, with the distance between i, j , i′,
and j ′ sufficiently large compared to the depth of NFDLC.
Similarly to the above analysis,

∃uσi′j ′ supported on σi′j ′ , such that u†
σi′j ′ W̃

a
j ′Ai′A
|φA〉 = |φA〉.

(24)

On the other hand, from the braiding statistics between a
and a′,

W̃a
j ′Ai′A

W̃a
jAiA = Bθ (a, a′)W̃a

jAiAW̃a′
j ′Ai′A

⇒ u†
σi′j ′ W̃

a′
j ′Ai′A

u†
σij

W̃a
jAiA = Bθ (a, a′)u†

σij
W̃a

jAiAu†
σi′j ′ W̃

a′
j ′Ai′A

,

(25)

which is inconsistent with Eqs. (23) and (24) when
Bθ (a, a′) 
= 1. �

We can restate Theorem 2 in the following way: if a
mixed state has strongly deconfined Abelian anyons with
nontrivial braiding statistics, then for any bipartition, there
must be long-range entanglement between the two comple-
mentary regions. Notably, our discussion includes the sce-
nario a′ = a, in which case Bθ (a, a′) = θ2(a). Compared to
Theorem 1, we leave behind the case that a has fermionic
self-statistics but trivial mutual braiding statistics with
other deconfined anyons. In such cases, a also generates an
anomalous strong 1-form symmetry but our proof does not
work. Nevertheless, the decohered toric code under “ZX ”
errors that we construct is indeed bipartite LRE, indicated
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by the nonzero TEN, which arguably should also be related
to the anomalous strong 1-form symmetry generated by f
anyons. It is intriguing to explore whether the existence
of deconfined fermions also generically leads to bipartite
LRE mixed states.

The above results can be viewed as a generalization of
the results in Ref. [66], where it is conjectured that mixed
states with anomalous strong 0-form symmetry in d spa-
tial dimensions cannot be prepared via an FDLC from any
(d + 2)-partite separable states. In two dimensions, this
means that the mixed states cannot be prepared via an
FDLC from a 4-partite nonseparable state, with the addi-
tional condition that three of the four parts intersect at one
point. Our results show that anomalies of 1-form symme-
tries can have a stronger constraining power, since bipartite
nonseparability implies multipartite nonseparability but
not vice versa.

IV. GENERALIZATIONS TO OTHER INTRINSIC
MIXED-STATE TOs

A. Decohered Kitaev honeycomb model

In Sec. III, we have provided a general route to gener-
alize the construction in Sec. II to obtain other intrinsic
mixed-state TOs. In this section, we give two more exam-
ples as applications. We first discuss the generalization to
the Kitaev honeycomb model: H = −Jx

∑
x bonds σ

x
j σ

x
k −

Jy
∑

y bonds σ
y
j σ

y
k − Jz

∑
z bonds σ

z
j σ

z
k −

∑
i
�h · �σi (with

|�h| � |Jμ|,μ = x, y, z). See Fig. 5 for the definition of the
three types of bonds. This model can be exactly solved
by mapping it to Majorana fermions coupled to static Z2

FIG. 5. The Kitaev honeycomb model, logical operators, and
flux operators. All the bonds are classified into three differ-
ent equivalence classes of parallel bonds: x bonds, y bonds,
and z bonds. There is a two-spin interaction, σαi σ

α
j , on each

α bond, where α = x, y, z. The two noncontractible-loop oper-
ators Wγx and Wγy , illustrated as blue and red, are the product
of the two-spin interactions on the bonds along those loops.
In each plaquette p , there is a conserved flux operator W f

p =
σ z

1σ
y
2 σ

x
3 σ

z
4σ

y
5 σ

x
6 .

gauge fields [51]. It is shown that the ground state ρ0 of
this model can realize Abelian Z2 TO and non-Abelian
Ising TO, as well as a gapless Z2 spin liquid phase. All
three phases have deconfined fermion excitations.

To obtain intrinsic mixed-state TOs, we construct the
following channel:

ρf = N X ◦N Y ◦N Z[ρ0], N α =
∏

〈ij 〉∈α bonds

N α
〈ij 〉,

N α
〈ij 〉[ρ0] = pσαi σ

α
j ρ0σ

α
j σ

α
i + (1− p)ρ0. (26)

This channel leads to decoherence of the fermions but
preserves the Z2 gauge flux. In other words, it pre-
serves the anomalous 1-form symmetry, with genera-
tors W f

p = σ z
1σ

y
2 σ

x
3σ

z
4σ

y
5 σ

x
6 [101]. Therefore, the resulting

mixed states must be LRE and must support deconfined
fermionic excitations. In the maximally decohered case
pf = 1

2 , the f particles are heated to infinite tempera-
ture, so all of the three ground-state phases will end up in
the maximally mixed state in the zero-flux sector (W f

p =
1,∀p), which belongs to the same intrinsic mixed-state TO
as that constructed in Sec. II. Actually, at pf = 1

2 , this state
can be obtained by applying a Hadamard gate on all verti-
cal links to Eq. (11). Therefore, the decohered honeycomb
model constructed here is also characterized by a nonzero
TEN. We note that a similar model in the context of Lind-
blad equations has been constructed in Ref. [102] but that
the LRE nature has not been uncovered.

B. Decohered double-semion model

As another example, we construct intrinsic mixed-state
TOs from the double-semion TO. The anyon content of
the double-semion TO is A = {1, s, s̄, ss̄} = {1, s} × {1, s̄},
where s is a semion, θ(s) = i; s̄ is an antisemion, θ(s̄) =
−i; and ss̄ is a boson, θ(ss̄) = 1. The fusion rules are
s× s = 1, s̄× s̄ = 1, s× s̄ = ss̄ [103]. Following the gen-
eral strategy in Sec. III, we can proliferate the semion
s using noisy channels, and due to the trivial braiding
between s and s̄, the 1-form symmetry generated by s̄ is
preserved. Thus s̄ remains a strongly deconfined excitation
with well-defined antisemionic statistics.

For concreteness, we start with the Pauli-stabilizer
model realizing the double-semion TO [104]. The model
is defined on a 2D square lattice with a Z4 degree of
freedom on each link, which is equipped with the Pauli
operators Z =∑n∈Z4

in|n〉〈n| and X =∑n∈Z4
|n+ 1〉〈n|.

The stabilizer model is defined as follows:

HDS = −
∑

p

(Av=p−δB−1
p + h.c.)−

∑

p

B2
p −

∑

i

Ci,

(27)

where Av , Bp , and Ci are represented graphically in
Fig. 6(a). Below, we briefly review how this model is
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(a)

(b)

(c)

FIG. 6. (a) The stabilizers used in defining HZ4 TC and HDS.
(b) The Kraus operators in the decohered double-semion model.
They are the shortest string operators of [em] anyons. (c) A
shortest closed e3m string, We3m

p , and an open e3m string, We3m
C̃

.

constructed from a parent Z4 toric code:

HZ4 TC = −
∑

v

Av −
∑

p

Bp + h.c. (28)

The anyon content of the Z4 toric code is {enmr(n, r =
0, 1, 2, 3)} with a Z4 × Z4 fusion rule, e4 = m4 = 1. The
statistics of the 16 anyons are given by θ(enmr) = inr.
The double-semion TO described by HDS is obtained by
condensing the boson e2m2 in the Z4 toric code (the
Ci term is the shortest string operator of e2m2, lead-
ing to its condensation), which causes confinement of
anyons with nontrivial braiding with e2m2 and identifica-
tion of anyons related by fusion with e2m2. Namely, [a] =
[a× e2m2] in the condensed theory, where we use [a] to
label the remaining deconfined anyons after the e2m2 con-
densation. The deconfined anyons in the condensed the-
ory are {[1], [em], [e3m], [e2]} = {[1], [em]} × {[1], [e3m]},
where [em] is a semion and [e3m] is an antisemion. Indeed,
a double-semion TO is realized.

Next, we investigate the effect of proliferating [em]
anyons using the following quantum channel:

N [em] =
∏

i

N [em]
i , N [em]

i [·] ≡
∑

n=0,1,2,3

pnKn
i · Kn†

i . (29)

The Kraus operators Ki and K†
i are the shortest string

operators of em anyons in the Z4 toric code:

Ki =
{

ZiXi+δ for vertical link i,

ZiX −1
i+δ for horizontal link i.

(30)

For simplicity, we take the initial state ρ0 to be the maxi-
mally mixed state in the ground-state subspace of HDS and
directly consider the maximally decohered case p0 = p1 =

p2 = p3 = 1
4 . Based on the analysis at the beginning of this

section, it seems that only the antisemion [e3m] will remain
strongly deconfined, which leads to a chiral-antisemion
theory {1, [e3m]}. However, the actual situation turns out
to be even more intriguing.

First, we note that the 1-form symmetry generated by
e3m is indeed preserved because [We3m

γ , Ki] = 0, for any
closed e3m strings, which implies that e3m is a deconfined
anyon. Examples of a shortest closed e3m string as well
as an open e3m string are given in Fig. 6(c). On the other
hand, the Ci terms in HDS do not commute with the Kraus
operators. As a result, for any open e2m2 string We2m2

C =∏
i∈C Ci, tr(ρWe2m2

C ) becomes 0 for ρ = N [em][ρ0]. This
means that the e2m2 anyons are revived from the Bose-
Einstein condensate and become a detectable anyon.
Notably, the e2m2 still proliferate classically, which is very
different from Bose-Einstein condensation, as we have
noted previously. Moreover, due to the strong 1-form sym-
metry generated by e3m and the fusion rule e3m× e3m =
e2m2, e2m2 must become a deconfined anyon. Therefore,
the remaining strongly deconfined anyons in ρ form a Z4
group {1, e3m, e2m2, em3}. We note that e3m and em3 are
both antisemions and that e2m2 is a transparent boson,
meaning that its presence cannot be remotely detected
via an Aharonov-Bohm measurement, i.e., a full braid
of any strongly deconfined anyon around it only results
in a unity phase factor. Anyon theories with transparent
bosons or fermions are known as nonmodular anyon theo-
ries [77,105]. It is widely believed that nonmodular anyon
theories cannot be realized by local gapped Hamiltoni-
ans in 2D bosonic systems [100,106]. This implies the
lack of a pure-state counterpart of the mixed-state TO;
thus it is indeed intrinsically mixed. Notably, the intrinsic
mixed-state TO constructed in Sec. II is also nonmodular,
with strongly deconfined anyons {1, f }. One crucial differ-
ence is that here the intrinsic mixed-state TO does have a
quantum memory. The undamaged part of the stored infor-
mation is manipulated by the logical operators shown in
Fig. 7:

We3m
γ̃x
=
∏

i∈γ̃x

XiZi+δ , We3m
γ̃y
=
∏

i∈γ̃y

XiZ−1
i+δ . (31)

We3m
γ̃x

We3m
γ̃y
= −We3m

γ̃y
We3m
γ̃x

as a consequence of the nontriv-

ial self-braiding statistics of e3m. Besides, both (We3m
γ̃x
)2

and (We3m
γ̃y
)2 are elements of the stabilizer group defined by

HDS, thus acting trivially in the code space. Therefore, the
intrinsic mixed-state TO supports quantum memory with
one and only one logical qubit. Remarkably, the anyon
theory here is identical to the one obtained by incoher-
ently proliferating the em, e2m2, and e3m3 in the Z4 toric
code via the same channel, N [em] [67,68]. The relation
among the Z4 toric code, double-semion, and nonmodular
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FIG. 7. (a) Two logical operators We3m
γ̃x

(in orange) and We3m
γ̃y

(in red). (b) Two nonlocal stabilizers. In both (a) and (b), periodic
boundary conditions are imposed.

anyon theory is summarized in Fig. 8. However, it does
not imply that the final mixed states in the two models
are identical. Actually, the decohered Z4 toric code model
(under N [em]) is fully characterized by the stabilizer group
Ge3m = 〈{We3m

p }〉, which defines the code space HC:

HC = {|ψ〉, g|ψ〉 = |ψ〉,∀g ∈ Ge3m}. (32)

In the maximally decohered case, the final state is the
maximally mixed state in HC. For the decohered double-
semion model, however, there are additional nonlocal
stabilizers formed by products of Ci. Two such nonlocal
stabilizers are depicted in Fig. 7 and other nonlocal stabi-
lizers can be obtained from these two via translation along
the horizontal direction.

We summarize several surprising features of intrinsic
mixed-state TOs revealed by this example. First, novel
nonmodular TOs beyond the usual unitary modular tensor
category description of 2+1D TOs can be easily realized
by Pauli-stabilizer models under decoherence [67,68]. Sec-
ond, decoherence can sometimes give rise to new types of
deconfined anyons that are absent in the anyon theory sup-
ported by the ground-state TO. This further implies that
some features of the mixed-state TO can go beyond the
prediction based on the IR theory or the anyon data of
the original topological order (i.e., before decoherence),

4 Toric code

Double-semion

TO
1, 3 , 2 2, 3

(Nonmodular anyon theory)

Condense 
2 2

Incoherently proliferate 

, 2 2, 3 3

Incoherently 

proliferate 

FIG. 8. The relation among the Z4 toric code, the double-
semion code, and the nonmodular anyon theory supported by
intrinsic mixed-state TOs.

including the field-theoretic description [32,33]. Indeed, if
we were to start from other lattice realizations of double-
semion topological order, e.g., the Z4 Pauli-stabilizer code
introduced in Ref. [105] [which is a variant of Eq. (27)]
or the twisted Z2 lattice gauge theory in [99,107–110], and
incoherently proliferate semions via quantum channels, we
would obtain a chiral-antisemion theory {1, s̄} instead. The
corresponding channels can be constructed by just tak-
ing the Kraus operators to be the semion string operators.
For the explicit expression of the shortest string operators
of twisted Z2 gauge theory, we refer the readers to the
Supplemental Material of Ref. [110].

V. DISCUSSION AND CONCLUSIONS

Our work introduces a promising mechanism for cre-
ating novel topologically ordered phases in mixed states.
We give two complementary perspectives to demonstrate
such a possibility. The first perspective is to look at what
anyons are proliferated. One of our key observations is
that while the routes of anyon condensation are limited
for pure states, anyon proliferation in mixed states can
occur in more general ways, offering new possibilities
for topological order. In the three models studied in this
work, we propose new types of topological order aris-
ing from incoherent proliferation of fermionic or semionic
anyons in ground-state topological order, which drives an
unconventional phase transition that does not resemble any
anyon-condensation transition in pure states. The other
perspective is to look at what remains. We find that the
existence of anomalous strong 1-form symmetries can be
viewed as a guiding principle for novel mixed-state TOs.
We give general proof that anomalous strong 1-form sym-
metries imply the LRE nature of the mixed states, which
manifests as deconfined anyons with nontrivial statistics.
By analyzing the fusion rules and statistics of deconfined
anyons, we show the possibility of realizing nonmodular
TO in mixed states.

As is clear from the three examples, intrinsic mixed-
state TOs can have or not have quantum memory, depend-
ing on whether the remaining deconfined anyons have
nontrivial braiding statistics or only fermionic statistics
[32].

It is worth noting that the construction of such exotic
mixed states is experimentally feasible in current NISQ
devices [17]. For example, one can realize the decohered
Z2 toric code model in Sec. II by implementing incom-
plete error correction, where only the error syndrome with
AvBp=v+δ = −1 is corrected after the syndrome measure-
ment using string operators W e or Wm. This partial error
correction would lead to a mixed state similar to ρf .

We end with some open directions. First, as already
mentioned in Sec. III, it remains unclear whether 1-form
symmetries generated by fermions also guarantee bipartite
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long-range entanglement or whether there exist counterex-
amples that are bipartite separable but have multipartite
long-range entanglement [66]. Second, a systematic classi-
fication of the intrinsic mixed-state TO is still lacking, with
two main difficulties. The first is how to treat the weakly
deconfined anyons with the peculiar one-way braiding
statistics. The other is how to generalize the discussion of
anyon statistics to mixed states away from the fixed-point
models, such as the one discussed in Sec. II D. Finally,
in our construction, we start from a topologically ordered
state and obtain its descendants via noisy channels. It is
also tempting to find systematic ways to prepare mixed-
state topological order from short-range entangled mixed
states by, e.g., measuring mixed-state symmetry-protected
topological order [15,29,30,34,35].
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APPENDIX A: DETAILS ABOUT THE
DECOHERED TORIC CODE

1. Calculation of the coherent information and
mapping to the RBIM

In this appendix, we present detailed calculations of the
coherent information Ic = S(ρf )− S(ρRf ) and the deriva-
tion of the mapping to the RBIM along the Nishimori
line [Eq. (4)] [71]. In the next two subsections, we cal-
culate the two von Neumann entropies, S(ρf ) and S(ρRf ),
respectively, using the replica trick: S = −Tr(ρ log ρ) =
− limn→1(∂/∂n)Tr(ρn).

a. von Neumann entropy S(ρRf )

We begin with the calculation of S(ρRf ). We intro-
duce two reference qubits, denoted by σ1,2, and maxi-
mally entangle them with the two logical qubits in the
ground-state subspace of the system

|�〉 = 1
2

∑

a,b=±1

|a, b〉S ⊗ |σ z
1 = a, σ z

2 = b〉R, (A1)

where a and b label the eigenvalues of the two noncon-
tractible Wilson loops Wz

γx
and Wz

γy
, respectively, with the

U(1) phase ambiguity fixed by

| − 1, 1〉S = Wx
γ̃y
|1, 1〉S, |1,−1〉S = Wx

γ̃x
|1, 1〉S,

| − 1,−1〉S = Wx
γ̃y

Wx
γ̃x
|1, 1〉S, (A2)

where the Wx
γ̃x,y

are noncontractible X loops on the dual
lattice. It is straightforward to check that |�〉 is a purifica-
tion of ρ0, the maximally mixed state in the ground-state
subspace, ρ0 = trR(|�〉〈�|). One can alternatively view
the reference qubits as an input (via the Choi map), which
encodes information into the code space [31].

To facilitate the calculation of the coherent information,
we write the decohered ρRf in the error-chain representa-
tion

ρRf =
∑

C

P(C)W f
C |�〉〈�|W f

C , (A3)

where C denotes the error-chain configurations (the set of
links where error occurs) with total length |C|. P(C) =
p |C|(1− p)N−|C| is the occurrence probability of the error
chain C [111]. W f

C is the (product of) open-string operators
that create f anyons at the ends of the C.

Now, the trace Tr(ρn
Rf ) is

Tr(ρn
Rf ) =

∑

{C(s)}

n∏

s=1

P
(
C(s)

)
tr

[
n∏

s=1

(
W f

C(s)
|�〉〈�|W f

C(s)

)]
,

=
∑

{C(s)}

n∏

s=1

P
(
C(s)

) 〈
�

∣∣∣W f
C(s)

W f
C(s+1)

∣∣∣�
〉

, (A4)

where W f
C(n+1) ≡ W f

C(1)
and the loops C(s) satisfy

C(s+1) = C(1) + ∂v(s), s = 1, 2, . . . , n− 1 (A5)

to give a nonzero contribution. The ∂v(s) are the boundaries
of a set of plaquettes v(s), so they are homologically trivial
loops. Then, Tr(ρn

Rf ) can be further simplified as

Tr(ρn
Rf ) =

1
2n−1

∑

C(1)

P
(
C(1)

) ∑

{v(s)}

n−1∏

s=1

P
(
C(1) + ∂v(s)) .

(A6)

The prefactor 1/2n−1 is due to the fact that for each replica
s = 1, 2, . . . n− 1, there are two plaquette sets v(s) giving
the same boundary ∂v(s). Tr(ρn

Rf ) can be mapped to the
partition function of a classical Ising model with n− 1 fla-
vors of Ising spin and a defect line at C1. Concretely, we
introduce Z2 variables nv(s) (l) = 1, 0 to denote whether or
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not link l is occupied in ∂v(s). We can then express the
probability P

(
C(1) + ∂v(s)) by the Z2 variables nv(s) (l). For

example, if a link l ∈ C(1) and nv(s) (l) = 1, then link l does
not occur in the error chain C(1) + ∂v(s) and contributes
a factor (1− p)nv(s) (l)p1−n

v(s) (l) in P
(
C(1) + ∂v(s)). As a

result, the probability P
(
C(1) + ∂v(s)) can be written as

P
(
C(1) + ∂v(s)) =

[
�l∈C(1)

(
(1− p)nv(s) (l)p1−n

v(s) (l)
)]

×
[
�l/∈C(1)

(
pn

v(s) (l)(1− p)1−n
v(s) (l)

)]
.

(A7)

The first part with those links belonging to the error chain
C(1) can be made symmetric as

�l∈C(1)

(
(1− p)nv(s) (l)p1−n

v(s) (l)
)

= �l∈C(1)

(
√

p(1− p)
(

1− p
p

)n
v(s) (l)− 1

2
)

=
√

p(1− p)
|C(1)|

�l∈C(1)

(
1− p

p

)n
v(s) (l)− 1

2
. (A8)

Similarly, we also make the second part symmetric, as

�l/∈C(1)

(
pn

v(s) (l)(1− p)1−n
v(s) (l)

)

= �l/∈C(1)

(
√
(1− p)p

(
p

1− p

)n
v(s) (l)− 1

2
)

=
√

p(1− p)
(N−|C(1)|)

�l/∈C(1)

(
p

1− p

)n
v(s) (l)− 1

2
.

(A9)

Then, we can express the link-probability part (p/(1−
p))nv(s) (l)−

1
2 or ((1− p)/p)nv(s) (l)−

1
2 as an Ising coupling

between two nearest-neighbor plaquettes that share the
link l. Concretely, we introduce n− 1 flavors of Ising
spins τ (s) = ±1, s = 1, 2, . . . n− 1 on each plaquette and
introduce the Ising coupling constant J as e−2J = p/(1−
p). Then, the link-probability part (p/(1− p))nv(s) (l)−

1
2 or

((1− p)/p)nv(s) (l)−
1
2 can be written as exp[Jηij τ

(s)
i τ

(s)
j ],

where i and j are the dual lattice-site coordinates of the two
plaquettes and ηij = −1 (1) for l belonging to (not belong-
ing to) the error chain C(1). Then, p is the probability of
antiferromagnetic coupling for each bond.

As a result, Tr(ρn
Rf ) can be expressed as the partition

function of an RBIM with n− 1 flavors of Ising spins and

periodic boundary condition (PBC)

Tr(ρn
Rf ) =

1
2n−1

∑

C(1)

P
(
C(1)

) ∑

{v(s)}

n−1∏

s=1

P
(
C(1) + ∂v(s))

= 1
2n−1

(√
(1− p)p

)(n−1)N ∑

C(1)

P ({η})

×
∑

{τ (s)}

n−1∏

s=1

exp
[
Jηij τ

(s)
i τ

(s)
j

]

= 1
2n−1

(√
(1− p)p

)(n−1)N ∑

C(1)

P ({η})

×
n−1∏

s=1

∑

{τ s}
exp

[
Jηij τ

(s)
i τ

(s)
j

]

= 1
2n−1

(√
(1− p)p

)(n−1)N

×
∑

C(1)

P ({η}) (Z[J , {η}])n−1 . (A10)

Finally, we take the replica limit n→ 1 to derive the von
Neumann entropy S(ρRf ):

S(ρRf ) = − lim
n→1

∂

∂n
Tr(ρn

Rf )

= −N
2

log[p(1− p)]+ log 2

−
∑

{ηl}
P({η}) log Z[J , {η}]

≡ −log ZRBIM
PBC + log 2− N

2
log[p(1− p)],

(A11)

where the first term is the average free energy of the RBIM
along the Nishimori line: e−2J = p/(1− p).

b. von Neumann entropy S(ρf )

The von Neumann entropy S(ρf ) can be derived simi-
larly to S(ρRf ). The initial density matrix is

ρ0 = 1
4

∑

a,b=±1

|a, b〉〈a, b|. (A12)
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Then, Tr(ρn
f ) is

Tr(ρn
f ) =

∑

{C(s)}

∑

a(s),b(s)

n∏

s=1

P
(
C(s)

) (1
4
〈a(s), b(s)|W f

C(s)
W f

C(s+1) |a(s+1), b(s+1)〉
)

= 1
2n−1 ×

1
4n−1

∑

C(1)

P
(
C(1)

) n−1∏

s=1

∑

{v(s)}

∑

d(s)x ,d(s)y =0,1

P
(

C(1) + ∂v(s) + d(s)x γx + d(s)y γy

)
, (A13)

where n+ 1 ≡ 1 and d(s)x,y = 0, 1 denotes whether or not C(s) lies in the same homological class as C(1). Similarly to the
mapping of Tr(ρn

Rf ) to the partition function of RBIM, we can also map Tr(ρn
f ) to the partition function of RBIM, except

that here we must sum over the four contributions of inserting or not inserting the two noncontractible defect lines on the
torus:

Tr(ρn
f ) =

1
2n−1 ×

1
4n−1

(√
(1− p)p

)(n−1)N ∑

C(1)

P ({η})
⎛

⎝
∑

dx ,dy=0,1

Zdx ,dy [J , {η}]
⎞

⎠
n−1

≡ 1
2n−1 ×

1
4n−1

(√
(1− p)p

)(n−1)N

⎛

⎝
∑

dx ,dy=0,1

ZRBIM
dx ,dy

⎞

⎠
n−1

, (A14)

where ZRBIM
dx ,dy

is the partition function with da noncontractible defect lines inserted along the cycle γa. Along the defect
line, the coupling changes from ηJ to −ηJ . This is equivalent to taking the antiperiodic boundary condition (APBC).

Sρf can in turn be obtained by taking the replica limit:

S(ρf ) = − lim
n→1

∂

∂n
Tr(ρn

f ) = 3 log 2− log

⎡

⎣
∑

dx ,dy=0,1

ZRBIM
dx ,dy

⎤

⎦− N
2

log[p(1− p)]. (A15)

We note that the second term can also be understood as the free energy of RBIM with all four types of boundary condition
(PBC or APBC along the x or y direction) into account.

c. Critical error rate and classical memory from coherent information

As we have demonstrated in the previous subsections, Sρf and SρRf can be mapped to the free energy of the RBIM with
or without the insertion of noncontractible defect lines (plus some constants), so the coherent information Ic is related to
the excess free energy of the defect line,

Ic = 2 log 2− log

∑
dx ,dy=0,1 ZRBIM

dx ,dy

ZRBIM
00

= 2 log 2− log

⎡

⎣
∑

dx ,dy=0,1

e−�Fdx ,dy

⎤

⎦, (A16)

where �Fdx ,dy is the excess free energy with the insertion
of a noncontractible defect line. For small p , the RBIM
is in the ferromagnetic (FM) phase and the excess free
energy of a defect line is extensive,�F{dx ,dy }
={0,0} ∼ O(L),
which leads to Ic = 2 log 2. On the other hand, when p is
above the error threshold pc ≈ 0.109, the RBIM under-
goes a phase transition to a paramagnetic (PM) phase
and Ic drops to 0 in the thermodynamic limit, which
indicates that ρf only retains a classical memory. This

is exactly the same as the situation with single-qubit
errors.

2. Relative entropy

As mentioned in the main text, the phase transition
at pf = pc is driven by the proliferation of f anyons.
In the double space, this corresponds to the condensa-
tion of f+f−. In this section, we provide a quantitative
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diagnosis of the f anyon proliferation in the original
Hilbert space. We denote the string operators creating α
anyons at the ends of the string as wα , and investigate
whether ραf ≡ N f [wαρ0wα] is really a distinct state from
ρf . Quantitatively, we calculate the relative entropy,

D(ρf ||ραf ) ≡ Tr(ρf log ρf )− Tr(ρf log ραf ), (A17)

and examine whether it diverges as the length of wα

approaches infinity, which is proposed as a generaliza-
tion of the Fredenhagen-Marcu order parameter for ground
states [31,112,113].

It turns out that, for pf < pc, D(ρf ||ραf ) diverges for

all three types of anyons, while for pf > pc, D(ρf ||ρ f
f )

becomes finite, in agreement with our expectation. Addi-
tionally, although D(ρf ||ρe(m)

f ) is divergent, e and m cease
to be distinct (weakly) deconfined excitations, since e×
f = m.

To obtain D(ρf ||ραf ), we can still use the replica trick:

D(n)(ρf ||ραf ) ≡
1

1− n
log

Trρf (ρ
α
f )

n−1

Trρn
f

(A18)

and recover D(ρf ||ραf ) by taking the limit n→ 1.

Using the error-chain expansion, we obtain

Trρf (ρ
α
f )

n−1 =
∑

{C(s)}

n∏

s=1

P(C(s))Tr

(
W f

C(1)
ρ0W f

C(1)

n∏

s=2

W f
C(s)

wαρ0wαW f
C(s)

)

=
∑

{C(s)}

∑

a(s),b(s)

[
n∏

s=1

1
4

P
(
C(s)

)
]
〈a(1), b(1)|W f

C(1)
W f

C(2)
wα|a(2), b(2)〉〈a(n), b(n)|wαW f

C(n)
W f

C(1)
|a(1), b(1)〉

n−1∏

s=2

〈a(s), b(s)|wαW f
C(s)

W f
C(s+1)w

α|a(s+1), b(s+1)〉. (A19)

Clearly, for α = e, m, Trρf (ρ
α
f )

n−1 = 0, so the relative
entropy diverges. Thus, in what follows, we only focus
on α = f . Terms in the summation are nonvanishing
only if the error-chain configurations satisfy the following
condition:

C(s) = C(1) + ∂v(s) + d(s)x γx + d(s)y γy + A,

s = 1, 2, . . . , n− 1, (A20)

where d(s)x/y = 0, 1 and A denotes the string where wα=f

acts nontrivially. Compared to Eqs. (A13) and (A14), we
can see that the insertion of wf

A corresponds to inserting an
additional defect line along A in the RBIM, which means
that the Ising coupling flips sign along A. We denote the
partition function of RBIM with a defect line along A as
ZRBIM[A], where we implicitly sum over the four types of
boundary conditions {dx, dy}. Then,

D(n)(ρf ||ρ f
f ) =

1
1− n

log
(ZRBIM[A])n−1

(ZRBIM)n−1
. (A21)

Taking the replica limit n→ 1, we obtain the relative
entropy,

D(ρf ||ρ f
f ) = log ZRBIM − log ZRBIM[A], (A22)

which is mapped to the excess free energy of defect line
A. In the FM phase (p < pc), it diverges as the distance
between the two ends of A goes to infinity. However, in
the PM phase (p > pc), it is finite, which indicates the
incoherent proliferation of f .

3. Calculation of the entanglement negativity

In this section, we derive the entanglement negativity
εA(ρf ) ≡ log ||ρTA

f ||1. It turns out that to calculate εA(ρf ),
it is more convenient to use the loop expansion [Eq. (7)]
instead of the error-chain expansion used in the last two
sections. We start from Eq. (9):

ρ
TA
f =

1
2N

∑

g∈G

(1− 2p)lg yA(g)g, (A23)

where lg is the length of the segment where gx and gz do
not coincidence and

yA(g) ≡ signA(gx, gz) ≡
{

1, if gxA, gzA commute,
−1, if gxA, gzA anticommute.

To calculate εA(ρf ), we utilize the replica trick, i.e.,
we first calculate the 2nth Renyi negativity ε(2n)

A (ρf ) :=
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(1/(2− 2n)) log(Tr(ρTA
f )

2n/Tr(ρf )
2n) and finally take the

replica limit 2n→ 1.
First, we consider the bipartition of A ∪ Ā of a cylinder,

as shown in Figs. 1(g)–1(i). We denote the bipartition in
Fig. 1(h) as bipartition 1 and that in Fig. 1(i) as biparti-
tion 2. We discuss these two types of bipartitions in detail
below.

Bipartition 1, generic p . We deal with bipartition 1 first.
In this case, we are able to obtain an exact result of ε(2n)

A
for any p . As we will show below, the result actually does
not depend on p at all. To start with, we calculate (ρTA

f )
2:

(ρ
TA
f )

2 = 1
22N

∑

g,h∈G

(1− 2p)lg+lhyA(g)yA(h)gh

= 1
22N

∑

g,h∈G

(1− 2p)lg+lhyA(gh)signA(g, h)gh

= 1
22N

∑

g,g̃∈G

(1− 2p)lg+lgg̃ yA(g̃)signA(g, g̃)g̃.

(A24)

In the last step, we use the substitution h = gg̃.

To simplify the expression, we deal with the summation over g first. The crucial part in this expression is signA(g, g̃),
which leads to complete destructive interference when g̃ crosses the boundary between A and Ā. To be more precise, we
define the subgroup H of G:

H ≡ {g ∈ G|gAg′A = g′AgA,∀g′ ∈ G}. (A25)

For bipartition 1, H contains all loops that do not cross the boundary. Then, we can simplify Eq. (A24):

(ρ
TA
f )

2 = 1
22N

∑

g∈G,g̃∈H

(1− 2p)lg+lgg̃ yA(g̃)g̃. (A26)

Thus,

Tr(ρTA
f )

2n = 2−2nN
n∏

s=1

∑

g̃(s)∈H

n∏

s=1

∑

g(s)∈G

(1− 2p)
∑n

s=1 lg(s)+lg(s) g̃(s) yA(

n∏

s=1

g̃(s))Tr

(
n∏

s=1

g̃(s)
)

= 2(1−2n)N
∑

g̃(1),...,g̃(n−1)∈H

∑

g(1),...,g(n)∈G

(1− 2p)
∑n−1

s=1 (lg(s)+lg(s) g̃(s) )+l∏n−1
s=1 g(s)

+l∏n−1
s=1 g(s) g̃(s) . (A27)

In a similar manner we can obtain Trρ2n
f , resulting in a similar expression with the summation over H replaced by a

summation over G:

Trρ2n
f = 2(1−2n)N

∑

g̃(1),...,g̃(n−1)∈G

∑

g(1),...,g(n)∈G

(1− 2p)
∑n−1

s=1 (lg(s)+lg(s) g̃(s) )+l∏n−1
s=1 g(s)

+l∏n−1
s=1 g(s) g̃(s) . (A28)

Since we are only concerned about their ratio, we can extract the common part in the expression and rename it as O{g̃}:

O{g̃} = 2(1−2n)N
∑

g(1),...,g(n)∈G

(1− 2p)
∑n−1

s=1 (lg(s)+lg(s) g̃(s) )+l∏n−1
s=1 g(s)

+l∏n−1
s=1 g(s) g̃(s) . (A29)

It is straightforward to show that O{g̃} is actually only a function of lg̃(s) . Based on this observation, we can divide the
summation over {g̃} into different classes. First, we define the invariant subgroup Gf of G, generated by Av=p−δBp .
In other words, elements in Gf are tensionless loops with lg = 0. Similarly, we define the subgroup Hf of H to be
Hf ≡ {g ∈ Gf |gAg′A = g′AgA,∀g′ ∈ Gf }. Then,
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Tr(ρTA
f )

2n =
∑

g̃(1)f ,...g̃(n−1)
f ∈Hf

∑

ũ(1),...,ũ(n−1)∈H/Hf

O{ũ},

Trρ2n
f =

∑

g̃(1)f ,...g̃(n−1)
f ∈Gf

∑

ũ(1),...,ũ(n−1)∈G/Gf

O{ũ}
(A30)

Since G/Gf = H/Hf , we obtain

Tr(ρTA
f )

2n

Trρ2n
f
=
( |Hf |
|Gf |

)n−1

= 2(2−2n)(L−1), (A31)

where L is the length of the entanglement cut. Thus the
Renyi negativity is

ε
(2n)
A (ρf ) = (L− 1) log 2,∀n. (A32)

In the replica limit 2n→ 1, we obtain εA(ρf ) = (L−
1) log 2. The subleading term, log 2, is the TEN, which
takes exactly the same value as that of the toric code
ground state.

Bipartition 2, p = 1
2 . For bipartition 2, the calculation

for generic p is much more challenging. This is mainly
because G/Gf 
= H/Hf , which means that Eq. (A31) can-
not be derived from Eq. (A30) for generic p . As a result,
the negativity does depend on p for this bipartition. Here,
we are mainly interested in the phase with intrinsic mixed-
state TOs for p > pc, so we take the maximally decohered
limit, p = 1

2 , in which case the calculation can be greatly
simplified.

For p = 1
2 ,

ρf = 1
2N

∑

gf ∈Gf

gf = 1
2N/2+1

∏

p

1+Wp

2
, Wp :=Ap−δBp .

(A33)

In this case, the negativity exhibits an unusual dependence
on the parity of L, as shown in Eq. (12). We will derive this
result below.

Analogously to Eqs. (A24) and (A26), we have

(ρ
TA
f )

2 = 1
22N

∑

gf ,g̃f ∈Gf

yA(g̃f )signA(gf , g̃f )g̃f

= 1
22N

∑

gf ∈Gf ,g̃f ∈Hf

yA(g̃f )g̃f . (A34)

Then, it is straightforward to obtain the Renyi negativity:

ε
(2n)
A (ρf ) = 1

2− 2n
log

( |Hf |
|Gf |

)n−1

. (A35)

For odd L, |Gf |/|Hf | amounts to the number of ele-
ments in Gf acting on the boundary: |Gf |/|Hf | =

(a) (b)

FIG. 9. (a) Bipartition 2 on a cylinder; in this case, L = 6.
(b) An example of bipartition with contractible subregion A.
The orange dashed lines represent auxiliary links. In this case,
Nl = 12.

2L−1. Here, the “−1” is due to the fact that h =∏
pi on the boundary Wpi is an element in Hf . Consequently,

ε
(2n)
A (ρf ) = ((L− 1)/2) log 2. The negativity is half the

value for bipartition 1, because there are only half as many
Wp acting on the boundary.

For even L, the calculation is more subtle. Specifi-
cally, there exist special elements h1 =

∏
i=1,3,...,L−1 Wpi ,

h2 =
∏

i=2,4,...,L Wpi(= h× h1), that act nontrivially on the
boundary, but still belong to Hf [for an illustration,
see Fig. 9(a)]. Therefore, |Gf |/|Hf | = 2L−2, ε(2n)

A (ρf ) =
((L− 2)/2) log 2.

Taking the replica limit 2n→ 1, we obtain the final
result of the logarithmic negativity (for bipartition 2):

εA(ρf ) =

⎧
⎪⎪⎨

⎪⎪⎩

L
2

log 2− log 2, if L is even,

L
2

log 2− log 2
2

, if L is odd.
(A36)

In all the cases, we obtain a nonzero TEN, indicat-
ing nontrivial topological order. Here, the value of the
TEN exhibits an unusual dependence on the parity of the
boundary size and thus seems to be less universal than
we would expect for a topologically ordered phase. In
Appendix A 4, we will try to resolve this puzzle by relating
the entanglement properties of ρf to those of more familiar
ground-state topological order.

Before that, we first make some quick comments on
entanglement negativity for more generic bipartitions,
including the cases with contractible subregion A. For
p = 1

2 , we can perform calculations similar to those shown
above and get exact results of negativity with general
bipartitions. It is convenient to introduce some auxiliary
links connecting the six qubits acted upon by Wp for each
p . We give one example in Fig. 9(b). With the help of
these auxiliary links, the entanglement negativity for gen-
eral bipartitions (with the only assumption being that both
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A and Ā are connected) yields

εA(ρf ) =

⎧
⎪⎪⎨

⎪⎪⎩

Nl

2
log 2− log 2, if Nl is even,

Nl

2
log 2− log 2

2
, if Nl is odd.

(A37)

Nl counts the number of auxiliary links that are cut through
by the entanglement cut. The even or odd dependence
shows up again. The reason that bipartition 1 is free of this
problem is that Nl = 2L is always even in that case. Finally,
we note that due to the unusual dependence of the TEN
(defined as the value of the subleading term here) on the
boundary size, one cannot extract the TEN by calculating
the tripartite mutual information as in the Kitaev-Preskill
scheme, unless one carefully chooses the multipartition
such that the Nl have the same parity for all subregions.

4. Relation to translation-symmetry-enriched Z2 TO

In this section, we give an explanation of the curious
dependence of the TEN on the entanglement cut, by estab-
lishing a connection between the entanglement properties
of ρf and ground-state Z2 topological order enriched by
translation symmetry. To establish this connection, we first
note that at p = 1

2 , ρf is nothing but the maximally mixed
state with Wp = Ap−δBp = 1,∀p . To find its analog in
ground states of local Hamiltonians, it is natural design a
stabilizer code with Wp being the stabilizers. Of course,
without other terms, we would get a very large ground-
state degeneracy, and the maximally mixed states in the
ground-state subspace would just be ρf . Thus we need
more stabilizers. Here, we provide one illuminating choice:

HSET = −
∑

p

Wp −
∑

vertical link i

ZiXi+δ . (A38)

It is straightforward to check that all the terms in HSET
commute with each other and that the ground state is deter-
mined up to topological degeneracy. Actually, this model
has recently been constructed and studied in Ref. [114]. We
briefly summarize the important properties of this model:

(1) It has Z2 (toric code) topological order, i.e., it has
the same type of anyon excitations and the same
statistics as the toric code.

(2) In this model, the Z2 topological order is enriched
by translation symmetry along the horizontal direc-
tion, which is manifested in the fact that excitations
Wp = −1 for p on even columns and odd columns
belong to different anyon superselection sectors and
correspond to e and m anyons in the toric code,
respectively. This phenomenon is often called weak
symmetry breaking.

(3) As a consequence of weak symmetry breaking, the
ground-state degeneracy (GSD) on a torus depends

on the linear size along the horizontal direction,
denoted by Lx: GSD = 4(2) for even (odd) Lx.

Our primary goal for introducing this model is to under-
stand the weird behavior of the entanglement negativity
for bipartition 2 given in Eq. (A37) ρf for bipartition 2, so
we consider putting the model of Eq. (A38) on a cylinder
and investigate the entanglement property of the ground
state under the same bipartition. First, we note that the
ground state or, more specifically, the maximally mixed
state in the ground-state subspace, can be written in an
illuminating way: ρGS ∝ ρf

∏
vertical link i((1+ ZiXi+δ)/2).

Moreover, for bipartition 2, the entanglement cut does not
go through the stabilizers ZiXi+δ at all, so these stabilizers
contribute zero entanglement. Thus,

εA(ρGS) = εA(ρf ) =

⎧
⎪⎪⎨

⎪⎪⎩

Lx

2
log 2− log 2, if Lx is even,

Lx

2
log 2− log 2

2
, if Lx is odd.

(A39)

We can instead calculate the entanglement entropy SA for
a (pure) ground state, with a bit more complication. To do
this, we first need to specify the boundary conditions at the
upper and lower boundaries of the cylinder (nevertheless,
the result does not depend on the choice of the boundary
conditions). Then, by fixing the value of the logical string
operators along the horizontal direction, we can obtain a
pure state and calculate its bipartite entanglement entropy,
which yields the same result:

SA =

⎧
⎪⎪⎨

⎪⎪⎩

Lx

2
log 2− log 2, if Lx is even,

Lx

2
log 2− log 2

2
, if Lx is odd.

(A40)

Thus, the TEN of ρf can be directly related to the TEE or
TEN of the ground state of HSET. For the latter, the depen-
dence of the TEE or TEN on the parity of Lx is a common
feature of topological order with weak symmetry breaking
of translations and can be understood in the following way.
Since translations permute e and m, for odd Lx, e and m are
exchanged when going around the cylinder (along the x
direction) once. Thus, instead of two independent logical
string operators along the x direction as naively expected
(for even Lx, the two logical string operators can be con-
structed by creating a pair of e or m anyons, dragging one
of them around a cycle, and annihilating the pair), only one
can be found. This subtlety here causes the TEE or TEN as
well as the GSD to have only half the value expected for
the toric code topological order.
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5. Robustness under phase errors

In this section, we aim to discuss the robustness of the
intrinsic mixed-state topological order under other noises.
We demonstrate how to obtain the phase diagram in Fig. 2
with additional single-qubit phase errors. Concretely, we
consider the following mixed state:

ρf ,e = N z ◦N f [ρ0]. (A41)

Similar to Appendixes A 1 and A 2, we analyze the prop-
erties of ρ̃f by calculating the von Neumann entropy S(ρ̃f )

and mapping it to a statistical model.

We denote the error rate and error-chain configuration
of N z (N f ) as pz (pf ) and Cz (Cf ), respectively. Then
ρf ,e can be represented by the error-chain expansion as in
Eq. (A3):

ρf ,e =
∑

Cz ,Cf

Pf (Cf )Pz(Cz)W
f
Cf

W e
Cz
ρ0W e

Cz
W f

Cf
. (A42)

Then, we can write the nth moment as

Tr(ρn
f ,e) =

∑

{C(s)}

∑

a(s),b(s)

n∏

s=1

1
4

Pf

(
C(s)f

)
Pz
(
C(s)z

) 〈a(s), b(s)|W e
C(s)z

W f

C(s)f
W f

C(s+1)
f

W e
C(s+1)

z
|a(s+1), b(s+1)〉. (A43)

Nonzero contributions only come from error-chain configurations satisfying

C(s)z = C(1)z + ∂v(s) + dz,(s)
x γx + dz,(s)

x γy , C(s)f = C(1)f + ∂v(s) + d f ,(s)
x γx + d f ,(s)

x γy , (A44)

so Eq. (A43) can be simplified as

Tr(ρn
f ,e) =

1
4n−1 ×

1
4n−1

∏

α=z,f

⎡

⎢⎢⎣
∑

C(s)α

P
(
C(1)α

) n−1∏

s=1

∑
{
v
(s)
α

}

∑

dα,(s)
x ,dα,(s)

y =0,1

P
(

C(1)α + ∂v(s)α + dα,(s)
x γx + dα,(s)

y γy

)
⎤

⎥⎥⎦ . (A45)

As in Eq. (A14), the collection of terms in the bracket for each α can be mapped to the partition function of a (n− 1)-flavor
RBIM:

Tr(ρn
f ,e) =

1
42n−2

(√
(1− pf )pf

)(n−1)N (√
(1− pz)pz

)(n−1)N (
ZRBIM

pf
(Jf )

)n−1
×
(

ZRBIM
pz

(Jz)
)n−1

, (A46)

where Jα (α = z, f ) is the strength of the Ising coupling for each of the two RBIMs. pα denotes the probability of
antiferromagnetic coupling on each bond. Both RBIMs are situated along the Nishimori line: e−2Jα = pα/(1− pα). Again,
the partition functions implicitly contain summations over the four boundary conditions. The von Neumann entropy can
be obtained by taking the limit as n→ 1:

S(ρf ,e) = − lim
n→1

∂

∂n
Tr(ρf ,e)

= −log ZRBIM
pz

(Jz)− log ZRBIM
pf

(Jf )+
(
−4 log 2− N

2
log[pz(1− pz)]− N

2
log[pf (1− pf )]

)
. (A47)

The terms in the parentheses are always regular for finite
pz, pf , so we can focus on the first two terms, which are
the free energies of two decoupled RBIMs. We denote
the Ising spin variables of the two RBIMs as σ and τ ,

respectively. Then we can straightforwardly obtain the
phase diagram of the statistical model, shown in Fig. 2.

Applying the same strategy as in Appendixes A 1
and A 2, we can map the relative entropy and coherent
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information to observables in the RBIM. We directly list
the results here:

(1) Relative entropy: D(ρf ,e||ρe
f ,e) is mapped to the

excess free energy of the defect line (connecting the
inserted pair of e anyons) of the RBIM of spin σ ;
D(ρf ,e||ρ f

f ,e) is mapped to the excess free energy
of the defect line (connecting the inserted pair of
f anyons) of the RBIM of spin τ ; D(ρf ,e||ρm

f ,e) is
mapped to the sum of the excess free energy of
the defect line (connecting the inserted pair of m
anyons) of the two RBIMs, because wm = wewf .

(2) Coherent information:

Ic = 2 log 2− log

⎡

⎣
∑

dx ,dy=0,1

e
−�Fσdx ,dy

⎤

⎦

− log

⎡

⎣
∑

dx ,dy=0,1

e
−�Fτdx ,dy

⎤

⎦, (A48)

where �Fσ(τ)

dx ,dy
is the excess free energy of noncontractible

defect lines in the RBIM of spin σ (τ). Across transitions
at pz ≈ 0.109 and pf ≈ 0.109, Ic changes discontinuously.
Quantum memory can only be realized when both σ and τ
are in the FM phase, while classical memory corresponds
to one of the spin species being in the FM phase while
the other in the PM phase and the topological memory is
completely lost when both RBIMs are in the PM phase.

From the above mapping, we can relate the four phases
of the RBIM to the four types of topological order (includ-
ing the trivial one) in Fig. 2.

APPENDIX B: EXACT SOLUTION TO THE
GAPLESS SPIN LIQUID PHASE OF THE TORIC
CODE MODEL THROUGH FERMIONIZATION

In this appendix, we analyze the properties of the toric
code model with additional ZX terms in the Hamiltonian,

H = −
∑

v

Av −
∑

p

Bp −
∑

i

hxzZiXi+δ . (B1)

We show that this model can be solved exactly using the
method introduced in Ref. [85]. First, we note that the
model has an extensive number of locally conserved quan-
tities. [H , Wp ] = 0 with Wp = Av=p−δBp , which follows
from the fact that the e anyons and adjacent m anyons are
always created or annihilated in pairs, so we can solve the
model in each simultaneous eigenspace of Wp . Second, the
role of the ZX term is to induce pair creation, annihilation,
and hopping of f anyons, which are fermions. Then, on
an infinite lattice or a topologically trivial lattice, in each
sector {Wp = wp}, the only degrees of freedom are the f
anyons, so we expect that in each sector, the model can be
described by a fermion tight-binding model. We assume
that the fermions are defined on the vertices of the lattice,
with the mapping

nf
v ←→

1− Av
2

, (B2)

where nf
v = f †

v fv is the fermion-number operator. This
mapping follows naturally from the observation that in the
zero-flux sector {wp = 1}, (1− Av)/2 corresponds to the
occupation number of the f anyon on v. Finally, because
f and e/m anyons are mutual semions, an f anyon can
acquire a nontrivial phase depending on wp when mov-
ing around the plaquette p . Thus Wp should correspond to
static Z2 flux on each plaquette in the fermion model and
so we have the following mapping:

Tviv
′
i
≡ iuiγviγ

′
v′i
←→ ZiXi+δ , link i ≡ 〈viv

′
i〉 (B3)

where the γv = fv + f †
v , γ ′

v′ = −i(fv′ − f †
v′ ) are Majorana-

fermion operators and the ui = ±1 are static Z2 gauge
fields defined on links, as depicted in Fig. 10. It is straight-
forward to check that the commutation and anticommuta-
tion relation between ZiXi+δ is preserved under the above
mapping:

⎧
⎨

⎩

{Tviv
′
i
, Tvj v

′
j
} = 0, if i = j ± δ,

[Tviv
′
i
, Tvj v

′
j
] = 0, otherwise,

←→
{ {ZiXi+δ , Zj Xj+δ} = 0, if i = j ± δ,

[ZiXi+δ , Zj Xj+δ] = 0, otherwise. (B4)

The commutation and anticommutation relation between ZiXi+δ and Av (and similarly for Bp = Av=p−δWp ) is also
preserved:

{ {Tviv
′
i
, 1− 2nf

v } = 0, if v ∈ ∂i,

[Tviv
′
i
, 1− 2nf

v ] = 0, otherwise,
←→

{ {ZiXi+δ , Av} = 0, if v ∈ ∂i,
[ZiXi+δ , Av] = 0, otherwise. (B5)
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FIG. 10. The fermionization of the model in Eq. (B1). The
links that Pauli matrices Zi, Xi+δ act upon are colored in blue and
red, respectively. There are two Majorana degrees of freedom,
γvi , γ

′
vi

, on each lattice site vi in the fermionized Hilbert space,
corresponding to the f anyon in the toric code model and we
implicitly assume that the location of the f anyon is the same
as the comprising e anyon. The term ZiXi+δ is fermionized as
iuiγviγ

′
v′i

, where vi, v′i are the starting point and the end point of
the link i, with the direction defined by the arrows, and ui is a
static Z2 gauge field on link i, which accounts for the mutual
semion statistics between f anyons (fermions) and m anyons (Z2
flux).

Besides, ZiXi+δ and Av , Bp satisfy an additional relation:
∏

i∈∂p

ZiXi+δ = BpAv=p+δ . (B6)

Under the mapping in Eq. (B3), the left-hand side of
Eq. (B6) is mapped to

∏
i∈∂p Tviv

′
i
= (1− 2nf

p−δ)(1−
2nf

p+δ)
∏

i∈∂p ûi. The right-hand side of Eq. (B6) can be
rewritten as WpAp−δAp+δ . Then, Eq. (B6) together with the
Eq. (B2) determine the Z2 flux configuration in the fermion
model,

∏

i∈∂p

ûi ←→ Ap−δBp = Wp , (B7)

as expected. Equations (B2), (B3), and (B7) form the com-
plete the dictionary of the fermionization procedure on an
infinite lattice or a topologically trivial lattice. However,
on the fermionic side, under periodic boundary conditions,

i.e., on a torus, there are additional Z2 fluxes threading the
two noncontractible cycles γx, γy along the x and y direc-
tion: ŵx,y =

∏
i∈γx,y

ûi. We need to figure out what is the
counterpart of ŵx,y on the toric code side. This can be done
by again using the mapping in Eq. (B3), which leads to

−
⎛

⎝
∏

i∈γx,y

ûi

⎞

⎠
∏

i∈γx,y

(1− 2nf
vi
)←→

∏

i∈γx,y

ZiXi+δ . (B8)

By using Eq. (B2), we obtain

−ŵx(y)←→
∏

i∈γx(y)

AviZiXi+δ =
∏

i∈γx(y)

ZiXi−δ ≡ Ŵf ′
γx(y)

.

(B9)

Indeed, Ŵf ′
γx and Ŵf ′

γy are also conserved quantities in the

original model, [Ŵf ′
γx(y) , H ] = 0.

In the end, we map the model in Eq. (B1) to a quadratic
fermion model with static Z2 gauge field,

H ↔ H̃ =
∑

v

(2nf
v − 1)(1+ ŵp)− hxz

∑

〈vv′〉
iûvv′γvγ ′v′ ,

(B10)

where ŵp =
∏
〈vv′〉∈∂p ûvv′ .

Due to the extensive number of conserved quantities,
[ûvv′ , H̃ ] = [ŵp/x/y , H̃ ] = 0, H̃ can be reduced to a free
fermion model in each Z2 flux sector, {ŵp = wp , ŵx =
wx, ŵy = wy}, and thus can be easily solved. In the case
hxz = 0, it is obvious that the ground state (the vacuum of
f ) lies in the zero-flux sector wp = 1 and the lowest energy
state in the four sectors with distinct {wx = ±1, wy = ±1}
has degenerate eigenenergy. This is just another perspec-
tive on the well-known topological degeneracy.

Via numerical investigations, we find that the ground
state always stays in the sector with wp = 1, irrespective of
the value of hxz, so we will mainly restrict our discussion
to this case,

H̃ = 4
∑

v

nf
v − hxz

∑

〈vv′〉
f †
v fv′ + fvfv′ + h.c., (B11)

and wa = 1,−1(a = x, y) corresponds to PBC and APBC,
respectively, along direction a. Then, H̃ can be solved
via Fourier transformation, fv = (1/

√
LxLy)

∑
ka=(2naπ/La)

fkeikxvx+ikyvy , where n ∈ Z for PBC and n ∈ Z+ 1
2 for

APBC:

H̃ =
∑

k

(f †
k , f−k)

(
2− hxz(cos kx + cos ky) −ihxz(sin kx + sin ky)

ihxz(sin kx + sin ky) −2+ hxz(cos kx + cos ky)

)(
fk

f †
−k

)
. (B12)
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The dispersion of Bogoliubov quasiparticle excitation can
easily be obtained,

ξk = 2
√

[2− hxz(cos kx + cos ky)]2+ [hxz(sin kx + sin ky)]2,
(B13)

and the ground-state energy is Eg = −
∑

k ξk/2. For hxz <

1, the spectrum is gapped and the ground energy is nearly
degenerate (with an exponentially small splitting) for the
four types of boundary conditions. This corresponds to the
gapped topologically ordered phase of H . For hxz = 1, the
gap closes at kx = ky = 0 and remains closed for hxz > 1,
with linear dispersion at two Dirac points, kx = −ky =
± arccos(1/hxz). So for hxz > 1, the original model lies in a
gapless spin liquid phase, reminiscent of the gapless phase
of the Kitaev honeycomb model. In this phase, the topo-
logical degeneracy is lifted by an algebraically small gap
but the ground state remains long-range entangled.

APPENDIX C: DETAILS OF THE DECOHERED
KITAEV HONEYCOMB MODEL

1. The model

In this appendix, we provide a detailed analysis of
the effect of proliferation of the f anyons in the Kitaev
honeycomb model at zero magnetic field:

H = −Jx

∑

x bonds

σ x
j σ

x
k − Jy

∑

y bonds

σ
y
j σ

y
k − Jz

∑

z bonds

σ z
j σ

z
k .

(C1)

This can be exactly solved by introducing the Majo-
rana fermion operators: σα = ibαb0. After fixing the Z2
gauge fields as ûjk = ibαj bαk = 1 (which corresponds to the
zero-gauge-flux sector in which the ground state lies),
the Kitaev Hamiltonian given in Eq. (C1) becomes the
following quadratic fermion model:

HF = −Jx

∑

x bonds

bx
j bx

k − Jy

∑

y bonds

by
j by

k − Jz

∑

z bonds

bz
j bz

k,

(C2)

the ground state |ψF〉 of which can be easily solved. The
physical ground state |�〉 can be obtained by projection to
the gauge-invariant subspace using the projection operator
P̂ = �i((1+ D̂i)/2), i.e., |�〉 = �i((1+ D̂i)/2)|{uij =
1}〉 ⊗ |ψF〉, where D̂i = bx

i by
i bz

i b
0
i . We will focus on the

Abelian phase with |Jz| > |Jx| + |Jy |, where HF is trivially
gapped and |�〉 belongs to the Z2 TO.

The effect of the noisy channel in Eq. (26) is to change
the fermion part of the density matrix but leave the gauge-
field configuration invariant. This can be shown by writing
the Kraus operators in terms of Majorana-fermion opera-
tors: σαi σ

α
j = −iûij b0

i b0
j . Thus the density matrix ρf can

be written as

ρf = P̂|{uij = 1}〉〈{uij = 1}| ⊗ ρFP̂, (C3)

where ρF is the Majorana-fermion density matrix, which is
ρF = N X ,F ◦N Y,F ◦N Z,F

[
ρF ,0

]
, where ρF ,0 = |ψF〉〈ψF |

is the ground state of HF . N α,F =∏〈ij 〉N α,F
〈ij 〉 , with

N α,F
〈ij 〉∈α bonds [·] ≡ (1− p) · +pb0

i b0
j · b0

j b0
i . (C4)

Similar to the case of the toric code model, we expect that
the error-corrupted state ρf undergoes a phase transition in
the mixed-state topological order at some critical error rate
pc. In the limit |Jz| � |Jx|, |Jy |, pc can be determined by
mapping to the RBIM, analogous to the case of the toric
code, which gives pc ≈ 0.109. The topological quantum
memory also breaks down to classical topological memory
after the transition, with two remaining commuting logical
operators:

Wγx =
∏

〈ij 〉∈γx

σ
α〈ij 〉
i σ

α〈ij 〉
j , Wγy =

∏

〈ij 〉∈γy

σ
α〈ij 〉
i σ

α〈ij 〉
j , (C5)

where α〈ij 〉 = x, y, z for 〈ij 〉 ∈ x bonds, y bonds, and z
bonds. The two logical operators are depicted in Fig. 5.
The residual classical memory is due to the fact that
[Wγx , σ

α〈ij 〉
i σ

α〈ij 〉
j ] = [Wγy , σ

α〈ij 〉
i σ

α〈ij 〉
j ] = 0, ∀〈ij 〉.

2. Entanglement negativity

In this section, we compute the entanglement negativ-
ity of the ρf in the decohered Kitaev honeycomb model,
starting from the Abelian phase. We will demonstrate the
existence of a nonzero TEN for any error rate p .

Again, we use the replica trick to compute the entangle-
ment negativity:

EA(ρf ) := log
∥∥∥ρTA

f

∥∥∥
1
= lim

2n→1

1
2− 2n

log
Tr
(
ρ

TA
f

)2n

Trρ2n
f

.

(C6)

First, it is easy to show that lim2n→1 Trρ2n
f = Trρf = 1,

due to the trace-preserving property of quantum channels.

So we only need to deal with the numerator: Tr
(
ρ

TA
f

)2n
.

A general curve γ , which bipartites the honeycomb lat-
tice into subregions A and B = Ā, intersects the bonds of
the honeycomb lattice. In order to partially transpose the
degrees of freedom in subregion A, we should define new
Z2 gauge fields to replace the gauge fields on the inter-
sected bonds. Following the notation in Ref. [115], we
assume that γ intersects 2L bonds and we denote the bonds
intersected by the curve γ as 〈anbn〉, n = 1, 2, . . . , 2L.
If the Z2 gauge field on the bonds 〈a2n−1b2n−1〉 and
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〈a2nb2n〉 are ûa2n−1b2n−1 = ibαa2n−1
bαb2n−1

, ûa2nb2n = ibβa2nbβb2n
,

then we introduce two Z2 gauge fields in subregions A
and B, respectively: wA,n = ibαa2n−1

bβa2n , wB,n = ibαb2n−1
bβb2n

.
Then the ground-state configuration of the gauge fields on
the intersected links can be written as:

∣∣{up}
〉 = 1√

2L

∑

wA=wB={±1}
|wA, wB〉 , (C7)

where |{up}〉 is the direct product of |uanbn = 1〉. As a
result, the ground-state density matrix can be written as

ρ0 = 1
2N+L+1

∑

g,g′,w,w′
Dg|uA, w〉|uB, w〉〈uA, w′|〈uB, w′|

⊗ ρF ,0Dg′ , (C8)

where the summation over g and g′ is over all the possible sets of the lattice sites and Dg =
∏

i∈g Di. What is more, we
can simply replace the ρF ,0 with ρF to obtain the decohered density matrix ρf . The partial trace of the density matrix is

ρ
TA
f =

1
2N+L+1

∑

g,g′,w,w′
Dg′ADgB |uA, w′〉|uB, w〉〈uA, w|〈uB, w′| ⊗ ρTA

F Dg′BDgA . (C9)

Thus,

(
ρ

TA
f

)2 =
(

1
2N+L+1

)2 ∑

g,g′,w,w′

∑

g2,g′2,w2,w′2

Dg′ADgB

(∣∣uA, w′
〉∣∣uB, w〉 ⊗ ρTA

F

)
〈uA, w|〈uB, w′|Dg′BDgADg2,BDg′2,A

|uA, w′2〉|uB, w2〉

〈uA, w2|〈uB, w′2| ⊗
(
ρ

TA
F

)
Dg′2,B

Dg2,A (C10)

where gA and gB, are the sets of lattice sites g ∩ A and g ∩ B, respectively. Now, we split Dg into the gauge-field part and
the fermion part: Dg = XgYg , where Xg = i|g|(|g|−1)/2∏

j∈g bx
j by

j bz
j and Yg = i|g|(|g|−1)/2∏

j∈g b0
j , where |g| is the number

of lattice sites in region g. The inner product can be simplified as

〈uA, w|〈uB, w′|Dg′BDgADg2,BDg2,A′ |uA, w′2〉|uB, w2〉

= δw,w′2

(
δgA,g′2,A

+ xA(w)δgA,A−g′2,A
YA

)
δw′,w2

(
δg′B,g2,B + xA(w)δg′B,B−g2,BYB

)

=
(

2δw,w′2PxA(w)
F ,A

) (
2δw′,w2PxB(w′)

F ,B

)
, (C11)

where Px
F ,A(B) = ((1+ xYA(B))/2) is the projection to the subspace with fixed Fermi parity x in subregion A (B), and

xA(B)(w) =
〈
uA(B), w

∣∣XA(B)
∣∣ uA(B), w

〉 = pA(B)
∏L

n=1 wn, where we define pA(B) ≡
∏

i,j∈A(B) uij . Putting this inner product
back into (ρTA)2, we obtain

(ρ
TA
f )

2 =
(

1
2N+L+1

)2 ∑

g,g′,w,w′
Dg|uA, w′〉|uB, w〉〈uA, w′|〈uB, w| ⊗ ρTA

F 2N
(

2PxA(w)
F ,A

) (
2PxB(w′)

F ,B

)
ρ

TA
F Dg′

= 1
2N+2L

∑

g,g′,w,w′
Dg|uA, w′〉|uB, w〉〈uA, w′|〈uB, w| ⊗ ρTA

F PxA(w)
F ,A PxB(w′)

F ,B ρ
TA
F Dg′ . (C12)

We now move one step further to calculate (ρTA)4:
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(ρ
TA
f )

4 = ((ρTA)2
)2 =

(
1

2N+2L

)2 ∑

g,g′,w,w′
Dg|uA, w′〉|uB, w〉〈uA, w′|〈uB, w| ⊗ ρTA

F PxA(w)
F ,A PxB(w′)

F ,B ρ
TA
F Dg′

∑

g2,g′2,w2,w′2

Dg2 |uA, w′2〉|uB, w2〉〈uA, w′2|〈uB, w2| ⊗ ρTA
F PxA(w2)

F ,A P
xB(w′2)
F ,B ρ

TA
F Dg′2

=
(

1
2N+2L

)2 ∑

g,g′,w,w′
Dg|uA, w′〉|uB, w〉〈uA, w′|〈uB, w| ⊗ ρTA

F PxA(w)
F ,A PxB(w′)

F ,B ρ
TA
F

2N
(

2PxA(w′)
F ,A

) (
2PxB(w)

F ,B

)
ρ

TA
F PxA(w)

F ,A PxB(w′)
F ,B ρ

TA
F Dg′2

= 1
2N+4L−2

∑

g,g′,w,w′
Dg|uA, w′〉|uB, w〉〈uA, w′|〈uB, w|

⊗
(
ρ

TA
F PxA(w)

F ,A PxB(w′)
F ,B

) (
ρ

TA
F PxA(w′)

F ,A PxB(w)
F ,B

) (
ρ

TA
F PxA(w)

F ,A PxB(w′)
F ,B

)
ρ

TA
F Dg′ . (C13)

With these results, we can now arrive at (ρTA)2n by iteration and induction:

(ρ
TA
f )

2n = 1
2N+2nL−2(n−1)

∑

g,g′,w,w′
Dg|uA, w′〉|uB, w〉〈uA, w′|〈uB, w|

[(
ρ

TA
F PxA(w)

F ,A PxB(w′)
F ,B

) (
ρ

TA
F PxA(w′)

F ,A PxB(w)
F ,B

)]n−1 (
ρ

TA
F PxA(w)

F ,A PxB(w′)
F ,B

)
Dg′ . (C14)

Using Eq. (C11) again, we can obtain the trace:

Tr(ρTA
f )

2n = 1
22nL−2n

∑

w,w′
TrF

(
ρ

TA
F PxA(w′)

F ,A PxB(w)
F ,B ρ

TA
F PxA(w)

F ,A PxB(w′)
F ,B

)n

= 2L−1 × 2L−1

22n(L−1) TrF

(
ρ

TA
F PpA

F ,APpB
F ,Bρ

TA
F PpA

F ,APpB
F ,B + ρTA

F PpA
F ,AP−pB

F ,B ρ
TA
F P−pA

F ,A PpB
F ,B

+ ρTA
F P−pA

F ,A PpB
F ,Bρ

TA
F PpA

F ,AP−pB
F ,B + ρTA

F P−pA
F ,A P−pB

F ,B ρ
TA
F P−pA

F ,A P−pB
F ,B

)n

. (C15)

Since the projector Dtot =
∏

i Di = XtotYtot = 1, the total fermion parity of the whole system is fixed by Ytot = Xtot = pApB.

Therefore, the terms in the bracket can be simplified as

ρ
TA
F PpA

F ,APpB
F ,Bρ

TA
F PpA

F ,APpB
F ,B + ρTA

F PpA
F ,AP−pB

F ,B ρ
TA
F P−pA

F ,A PpB
F ,B + ρTA

F P−pA
F ,A PpB

F ,Bρ
TA
F PpA

F ,AP−pB
F ,B + ρTA

F P−pA
F ,A P−pB

F ,B ρ
TA
F P−pA

F ,A P−pB
F ,B

= ρTA
F (P

+
F ,A + P−F ,A)(P

+
F ,B + P−F ,B)ρ

TA
F (P

+
F ,A + P−F ,A)(P

+
F ,B + P−F ,B)

= (ρTA
F )

2. (C16)

Then, we can finally obtain the entanglement negativity:

EA(ρf ) = log(tr(ρTA
f ))

= lim
2n→1

1
2− 2n

log tr
(
ρTA

)2n

= L log 2− log 2+ log ||ρTA
F ||1, (C17)
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where the last term is the entanglement negativity εA(ρF)

of the density matrix of fermions. We note that the above
result holds for any parameters Jx, Jy , and Jz, and also for
general bipartitions as long as the length of the boundary
is even (Nl = 2L) and A and B are connected. To analyze
the scaling behavior of εA, we again consider bipartition of
a cylinder with a translation-invariant entanglement cut. In
the gapped phase, ρF ,0 is a Gaussian state with finite corre-
lation length, so εA(ρF ,0) = αL+ · · · satisfies an area law,
with a vanishing subleading term for L→∞, We expect
εA(ρF) also to have the same property after applying local
channels on ρF , since local quantum channels cannot gen-
erate long-range entanglement. Thus we obtain TEN =
log 2, consistent with our expectation for even boundary
sizes, which shows that this result holds for mixed-state
topological order beyond stabilizer codes. For the deco-
hered Kitaev honeycomb model, we still anticipate the
TEN to depend on the parity of Nl, as in the toric code
model. Indeed, in the case p = 1

2 , ρf is equivalent to ρf
up to an on-site unitary transformation. However, for gen-
eral p , the calculation of negativity for odd Nl is more
complicated and thus is not shown here.

APPENDIX D: A PROOF THAT e2m2 IS A
DECONFINED ANYON

In this appendix, we prove that e2m2 indeed becomes a
deconfined anyon in the decohered double-semion model,
according to Definition 1. To start with, we write down
the explicit form of the decohered state ρ = N [em][ρ0],
with maximal decoherence p0 = p1 = p2 = p3 = 1

4 . As
discussed below Eq. (32), ρ is determined by the stabilizer
group G = 〈{We3m

p }, nonlocal stabilizers〉:

ρ = 1
4N

∑

g∈G

g. (D1)

We define the open e2m2 string We2m2

C̃
=∏i∈C̃ X 2

i Z2
i+δ on

the dual lattice and UC̃ = (I + iWe2m2

C̃
)/
√

2. Then, e2m2

anyons can be created at ∂C̃ by ρ → UC̃ρU†
C̃

. We prove
below that both criteria in the definition of deconfined exci-
tations are satisfied. The second criterion directly follows
from the fact that e2m2 anyons generate a strong 1-form
symmetry of ρ, similar to the proof of the deconfinement
of f anyons in Sec. III. The first criterion can be proved by
contradiction. We assume that e2m2 anyons can be locally
created, i.e., ∃V∂C̃ supported near ∂C̃, such that UC̃ρU†

C̃
=

V∂C̃ρV†
∂C̃

. Then, we define two noncontractible Wilson

loops W e
γ1
=∏i∈γ1

Zi and W e
γ2
=∏i∈γ2

Z†
i , as depicted in

Fig. 11. Because the W e
γ1

W e
γ2

commute with V∂C̃ as well as
all the stabilizers, we have

W e
γ1

W e
γ2

V∂C̃ρV†
∂C̃

We†
γ1

We†
γ2
= V∂C̃ρV†

∂C̃
. (D2)

FIG. 11. Detecting e2m2 anyons using Wilson loops.

On the other hand, W e
γ1

W e
γ2

anticommutes with We2m2

C̃
, so

W e
γ1

W e
γ2

UC̃ρU†
C̃

We†
γ1

We†
γ2
= U†

∂C̃
ρU∂C̃ 
= UC̃ρU†

C̃
, (D3)

which leads to a contradiction with Eq. (D2). Therefore,
the e2m2 anyons cannot be locally created, so they are
deconfined excitations in the decohered double-semion
model.
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