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We propose a general framework for studying two-dimensional (2D) topologically ordered states sub-
ject to local correlated errors and show that the resulting mixed state can display intrinsically mixed-state
topological order (imTO)—topological order that is not expected to occur in the ground state of 2D local
gapped Hamiltonians. Specifically, we show that decoherence, previously interpreted as anyon conden-
sation in a doubled Hilbert space, is more naturally phrased as, and provides a physical mechanism for,
“gauging out” anyons in the original Hilbert space. We find that gauging out anyons generically results in
imTO, with the decohered mixed state strongly symmetric under certain anomalous 1-form symmetries.
This framework lays bare a striking connection between the decohered density matrix and topological
subsystem codes, which can appear as anomalous surface states of three-dimensional topological orders.
Through a series of examples, we show that the decohered state can display a classical memory, encode
logical qubits (i.e., exhibit a quantum memory), and even host chiral or nonmodular topological order. We
argue that a partial classification of imTO is given in terms of nonmodular braided-fusion categories.
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I. INTRODUCTION

Quantum many-body states with nontrivial entangle-
ment serve as resource states for various tasks in quantum
information processing. Quintessential amongst these are
states with topological order, which support fractionalized
excitations (anyons) and may serve as platforms for topo-
logical quantum computation [1,2]. These states, which
arise as locally indistinguishable degenerate ground states
of certain gapped Hamiltonians, form the code space for
topological quantum error-correcting codes (QECCs), with
the Hamiltonians provably robust to weak, local perturba-
tions [3–5]: their utility as resource states thus extends to
all states within the topologically ordered phase.

Recent years have witnessed remarkable progress in
preparing and manipulating such states in programmable
quantum simulators [6–10]. Decoherence is invariably
present in these platforms and thus identifying a sharp
notion of mixed-state topological order is not merely
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of fundamental interest but also of immediate practical
import. While any finite temperature is known to destroy
topological order (TO) in two spatial dimensions (2D)
[11,12], for local decoherence below a certain thresh-
old, the quantum information encoded in a topological
QECC is recoverable [13]. Indeed, the persistence and
eventual breakdown of TO in a pure state |ψ〉 subject
to a local decoherence channel E has recently been stud-
ied through the lens of the entanglement properties of
the “corrupted” density matrix E[|ψ〉 〈ψ |] [14–24]. While,
naively, one expects that local errors destroy quantum cor-
relations (and hence TO), the decohered state is not the
Gibbs state and can in principle encode structured entan-
glement. Indeed, decohered density matrices can display
intrinsically mixed symmetry-protected topological (SPT)
order [25–30]—i.e., SPT order that does not arise in the
ground state of a local Hamiltonian. Recently, Ref. [31]
has observed a nontrivial topological entanglement nega-
tivity (TEN) in a decohered toric code, which was taken to
indicate the presence of a novel mixed-state TO. However,
a systematic framework for addressing, let alone defining,
such intrinsically mixed-state topological order (imTO) is
lacking.

In this paper, we propose a general framework for char-
acterizing the TO in mixed states that are obtained by
subjecting arbitrary 2D topologically ordered pure states to
local decoherence (as described by finite-depth local quan-
tum channels). For initial pure states with Abelian TO,
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locally correlated noise can induce imTO in the resulting
mixed state, which we show can be described by topolog-
ical subsystem codes (TSSCs) [32–35]. As special cases,
we recover previous mixed-state TOs [15,31], which sup-
port only classical memories [36]. In general, however,
TSSCs describe states supporting both classical and quan-
tum memories, i.e., they can encode logical qubits. We
attribute this memory structure in the decohered state to
certain anomalies in the 1-form symmetries of the TSSC;
these in turn stem from the 1-form symmetries of the parent
TO and of the decoherence channel.

Remarkably, TSSCs can describe nonmodular (equiva-
lently, premodular) TOs—phases in which certain anyons
are “invisible” to all other anyons—and even chiral topo-
logical phases, which admit no gapped boundary to vac-
uum. It is widely believed on physical grounds that non-
modular TO cannot exist in the ground state of a local
gapped Hamiltonian in 2D. Our work nevertheless pro-
vides a physical mechanism for realizing such codes and,
hence, nonmodular TO in mixed states: indeed, we expect
that all TSSCs can be realized by subjecting twisted quan-
tum doubles [37] to local noise. Formally, this implies
that the classification of imTO—which we define as
any mixed-state TO that is nonmodular—is at least as
rich as that of TSSCs. On the practical side, we show
that Abelian TO (which permit gapped boundaries) are
resource states for preparing anomalous topological phases
(including nonmodular and chiral phases) under locality-
preserving quantum channels (LPQCs) [38], where this
would otherwise require sequential quantum circuits
[39,40] or measurement-and-feedback circuits (which suf-
fer from postprocessing bottlenecks).

As in prior works, an essential step in our analysis is
mapping the decohered density matrix to a vector in a
“doubled” Hilbert space. In this doubled Hilbert space,
the decoherence channel can be understood as inducing
anyon condensation across the two layers [15–17]. Our
key insight is that in the original (physical) Hilbert space,
this process corresponds to the “gauging out” of an anyon
in the original TO [41] (see Fig. 1). While only bosonic
anyons are permitted to condense [42], decoherence allows
us to gauge out anyons with any spin (e.g., fermions or
semions). This is intimately related to the fact that TSSCs
appear as anomalous surface states of certain TOs, lattice
realizations of which are given by Walker-Wang (WW)
models [43]: locally correlated errors hence provide a
means of exfoliating surface states of three-dimensional
(3D) WW models, which can be anomalous [44,45]. We
further extend our framework to incorporate initial pure
states with arbitrary TOs [as described by a unitary modu-
lar tensor category (UMTC)], including those with non-
Abelian anyons; strictly speaking, the resulting mixed
state is no longer a TSSC (which are characterized by
Abelian-anyon theories) but nevertheless corresponds to
an anomalous WW surface state. This general construction

FIG. 1. (i) A pure state with TO described by a unitary modu-
lar tensor category (UMTC) C subject to locally correlated noise
can be represented as (ii) a vector in a doubled Hilbert space with
C × C̄ TO undergoing anyon condensation. (iii) The decohered
state in the doubled Hilbert space has TO given by A (Ā) in the
bra (ket) space, along with some transparent anyons T . (iv) In the
physical Hilbert space, this process corresponds to gauging out
the decohered anyon a, with the quantum TO in the mixed state
described by the anyon theory A, which only includes anyons
from C that braid trivially with a.

leads us to characterize mixed states supporting imTO as
those that are strongly symmetric under a nonmodular 1-
form symmetry. We will expand on the distinction between
strong and weak symmetries, including the role that the
latter play, as well as the subtleties involved in defining
imTO states as phases of matter. From this, we conclude
that imTO is (partially) classified in terms of nonmodu-
lar unitary braided-fusion categories. We also provide a
finer characterization of these imTOs in terms of the set
of locally detectable anyons outside the code space, which
are analogous to quasiparticle excitations in conventional
pure-state TOs. Finally, using the anomalies of their 1-
form symmetries, we discuss the sense in which the imTOs
we obtain constitute genuine mixed-state phases of matter.

The balance of this paper is organized as follows. In
Sec. II, we discuss the set of local decoherence channels
under consideration and show that, for maximal decoher-
ence, the resulting mixed state belongs to the code space
of a TSSC. In particular, we show that decoherence pro-
vides a physical mechanism for “gauging out” certain
anyons, whereby only those anyons that braid trivially with
the decohered anyons remain as deconfined excitations in
the resulting theory. We illustrate this framework through
examples in Sec. III, where we show that the decohered
state can host a quantum memory as well as chiral or even
nonmodular TO. In Sec. IV, we argue that our framework
can naturally be generalized to include parent non-Abelian
theories, which leads to our claim that braided-tensor cate-
gories provide a partial classification for imTO. In Sec. V,
we introduce the notion of locally detectable anyon types
for imTOs. We then state our results in the language of
strong 1-form symmetries in Sec. VI, where we also show
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an analogy between imTOs and surface states of WW mod-
els. We conclude in Sec. VII with a discussion of open
questions and future directions.

II. TOPOLOGICAL SUBSYSTEM CODES VIA
DECOHERENCE

While our framework extends to generic TOs, we first
illustrate our construction with Abelian TOs that admit
gapped boundaries, in the context of lattice models real-
izing topological-stabilizer codes (which serve as parent
codes for TSSCs). Consider a square lattice with periodic
boundary conditions and place a d-dimensional qudit on
each vertex. We define the Pauli operators Xi and Zi acting
on site i, which satisfy the Zd algebra

ZiXi = ωXiZi, ω = exp(2π i/d). (1)

We consider commuting projector translation-invariant
Hamiltonians:

HC =
∑

i,α

1 − θαi

2
+ H.c. , (2)

where θαi are constructed from finite local products of Pauli
operators acting near site i and are mutually commuting:
[θαi , θβj ] = 0 ∀,α,β. The θαi are stabilizers that generate
the stabilizer group S = 〈{θαi }〉. The index α labels differ-
ent families of stabilizers acting at site i. Since the Hamil-
tonian is positive semidefinite, the ground-state manifold,
also known as the code space HC, is uniquely specified by
the set of all states satisfying θαi |ψ〉 = |ψ〉 ∀ i,α.

We are interested in topological-stabilizer models, the
ground states of which are topologically ordered. Recall
that a TO C is described by a unitary braided-fusion cate-
gory: a finite set of anyons {a, b, . . . }, their fusion rules a ×
b = ∑

c N c
abc (with N c

ab ∈ Z+), and their braiding statistics
Bθ (a, b) ≡ θab. It is generally believed that local gapped
Hamiltonians in 2D can at most support TO described
by unitary modular fusion categories, with the modularity
constraint being that the only excitation that braids trivially
with itself and all other anyons is the vacuum superselec-
tion sector (equivalently, the S matrix is unitary). Here,
we will use the term “anyon theory” to refer generally to
unitary braided-fusion categories, i.e., without the mod-
ularity constraint, and specify when the anyon theory is
modular [46].

Now, given a topological-stabilizer model realizing the
unitary modular tensor category (UMTC) C, each anyon
is associated with a “stringlike” operator that violates the
stabilizer conditions θαi = 1 only at its end points; anyons
correspond to errors that take one out of the code space.
We can thus interpret the θαi as generating contractible
loops of anyons: θαi �= 1 indicates that the anyon gener-
ated by θαi accrues a nontrivial phase by braiding around
the anyon corresponding to the local error. To each anyon,

we also associate Wilson-loop operators, Wa
x,y , which wrap

around the x and y cycles of the torus, respectively, and
physically correspond to locally creating an anyon a and its
conjugate ā, before transporting a around one cycle of the
torus and then annihilating it with ā. These Wilson-loop
operators commute with the stabilizers and thus preserve
the code space, corresponding to a nontrivial ground-state
degeneracy of HC on the torus. The nontrivial braiding of
the anyons is encoded in the Wilson-loop algebra: Wa

xWb
y =

eiθabWb
yWa

x . Since topological-stabilizer models can only
realize modular TOs [41], each anyon a braids nontrivially
with at least one other anyon b. The Wilson-loop operators
thus correspond to logical operators, in that they provide
a representation of the Pauli algebra on the code space;
TOs hence provide quantum memories. The paradigmatic
example is provided by the toric code, for which the Wil-
son loops associated with the e- and m-anyon excitations
satisfy the Pauli algebra, {We

x, Wm
y } = {Wm

x , We
y} = 0, such

that the code space encodes two logical qubits.
In our framework, we will always take as input

a topologically ordered pure state, which hosts TO
described by a UMTC C. To make an explicit connec-
tion with topological-stabilizer codes and TSSCs, we dis-
cuss Abelian theories that admit gapped boundaries here,
though we will later relax this restriction. We are now
interested in the fate of the TO (equivalently, the code
space) under locally correlated noise. Such error pro-
cesses correspond to quantum channels, where we consider
translation-invariant channels of the form

Ea[ρ] =
∏

i

Ea,i[ρ], Ea,i[ρ] =
k−1∑

m=0

pmOm
i,aρ(O

m
i,a)

†,

(3)

where
∑

m pm = 1 and ρ is the density matrix of the sys-
tem, obtained after tracing out some environment. We will
typically take the initial state to be pure—ρ = |ψ〉 〈ψ |,
where |ψ〉 is some pure state—but this is easily relaxed.
Here, Oi,a is a local operator supported near site i corre-
sponding to a “short” Wilson string creating an anyon a
and its conjugate ā near i. We take Oi,a to be a product
of Pauli operators such that (Oi,a)

k = 1 for some inte-
ger k ≤ d. We restrict ourselves to the case of maximal
decoherence pm = 1/k. These error channels thus have the
physical interpretation of incoherently proliferating anyons
of the type am, for m = 0, . . . , k − 1. For a general Abelian
twisted quantum double model, which can be expressed
in the general form given in Eq. (2), the set of anyons
{am} (m = 0, . . . , k − 1) can, e.g., be taken as the set of
gauge charges of the model, which generate a Lagrangian
subgroup [37]. These Pauli-stabilizer models realize all
Abelian quantum double models (equivalently, all Abelian
TOs that admit gapped boundaries [47]), which is the class
of systems that we now consider.
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Let ρ be an arbitrary density matrix in the ground-state
manifold (code space) of HC , such that θαi ρ = ρ(θαi )

† = ρ.
Naively, one expects that decoherence will wash out any
long-range entanglement present in the state but we will
now show that while the TO is indeed reduced (consistent
with our error channels being LPQCs [38]), it can remain
nontrivial and represent a genuine mixed-state quantum
phase of matter, which is not expected to be realized as
the gapped ground state of any local 2D Hamiltonian but
instead does arise as an anomalous surface state of a 3D
TO.

To characterize the TO in the decohered density matrix
ρE ≡ E[ρ], it will prove conceptually fruitful to repre-
sent the density matrix as a vector in a doubled Hilbert
space, through the Choi-Jamiołkowski isomorphism [48,
49]. Explicitly, we map ρ = ∑

a,b ρab |a〉 〈b| to the pure
state |ρ〉〉 = ∑

a,b ρab |a〉 |b〉∗ ∈ H+ ⊗ H−, where |b〉∗ ≡
K |b〉, K is complex conjugation in the computational basis
and Hσ=± are the ket and bra spaces, respectively. In the
doubled space, the stabilizer conditions become

θαi+ |ρ〉〉 = (θαi−)
∗ |ρ〉〉 = |ρ〉〉, (4)

where θαi± is the action of θαi on H±. Hence, |ρ〉〉 lies in
the ground-state manifold of the TO C × C in the doubled
Hilbert space, with the two factors living on the ket and
bra spaces, respectively. Consider the decohered density
matrix ρE in the doubled Hilbert space:

|ρE〉〉 = Ea |ρ〉〉 =
∏

i

(
k−1∑

m=0

1
k

Om
i,a+(O

m
i,a−)

∗
)

|ρ〉〉. (5)

For maximal decoherence, the vectorized error channel
thus has the effect of projecting |ρ〉〉 to the subspace sat-
isfying Oi,a+(Oi,a−)∗ = +1. As previously noted (see, e.g.,
Ref. [15]), the effect of local error channels of the form
Eq. (3), associated with decohering the set of anyons Â =
{am}, can be understood as inducing anyon condensation
of the anyon pair a+a− in the doubled Hilbert space repre-
sentation of the initially pure density matrix [50]. Since the
two anyons a+ and a− have opposite spins, their composite
is a boson and can be condensed.

We now turn to one of the key results of this work by
providing a finer characterization of the resulting deco-
hered state |ρE〉〉. In particular, let us understand the effect
of decoherence on the code space of the original sta-
bilizer group S . In the doubled Hilbert space, let S±
be the groups generated by the original stabilizers on
the ket and bra spaces: SC,σ = 〈{θαiσ }i,α〉. By assumption,
Oi,a+(Oi,a−)∗ do not commute with the original stabiliz-
ers (these create anyons and hence take us out of the code
space). Thus, defining the group generated by the errors,
FE = 〈{Oi,a+(Oi,a−)∗}i,a〉, the state |ρE〉〉 is stabilized by
the group of mutually commuting elements in the union

of the groups FE , SC,+, and SC,−—i.e., their centralizer
SC×C̄,E ≡ Z(FE ∪ SC,+ ∪ SC,−). Note that in the doubled
Hilbert space, |ρ〉〉E is still an element of the code space of
a topological-stabilizer code [51].

Let us now restrict our attention to those elements S+ ∈
SC×C̄,E that act nontrivially only on H+. In the physi-
cal Hilbert space, these are precisely those stabilizers that
commute with the errors: [S, Oi,a] = 0. In particular, if
S+ ∈ SC×C̄,E , then this implies S∗

− ∈ SC×C̄,E . These oper-
ators satisfy S+ |ρE〉〉 = S∗

− |ρE〉〉 = |ρE〉〉 or, equivalently,

SρE = ρES†=ρE , ∀S : [S, Oi,a] = 0. (6)

Let F = 〈{Oi,a}i〉 be the group generated by all local errors
and let G = 〈S ,F〉. Since the elements of S and F do not
commute, the group G is in general non-Abelian. The set
of stabilizers of ρE is then given by the center of G, SE =
Z(G). In other words, ρE is an element of the code space
of SE but this need not be the code space of a topological-
stabilizer code.

Remarkably, the group structure given by the stabiliz-
ers SE and G, the latter of which is known as a “gauge
group” (not to be confused with the gauge group of a
gauge theory), precisely realizes the structure of a topo-
logical subsystem code, which leads to one of our main
results: the set of decohered states ρE on the torus forms
the code space for a TSSC. We briefly discuss the struc-
ture of TSSCs here but refer the reader to Ref. [41] for
a thorough exposition. As in the case of stabilizer codes
discussed above, the Hilbert space for a TSSC can be writ-
ten as a direct sum of the code space and its orthogonal
complement H = HC ⊕ H⊥

C . For a subsystem code, the
code space further factorizes HC = HL ⊗ HG such that
the logical information is only encoded in the logical sub-
system HL, while HG is referred to as the gauge subsystem
[33]. The gauge group G comprises a set of Pauli operators
that preserve the code space (commute with the stabilizers)
but their action within the code space induces the factor-
ization of the code space. For a gauge group G that is
proportional to the stabilizer group S , the gauge subsys-
tem HG is trivial and one again has a topological-stabilizer
code. If the gauge group is nontrivial, TSSCs can support
nonlocal stabilizers that cannot be generated by local sta-
bilizers; moreover, TSSCs must satisfy the constraint that
there should be no nonlocal stabilizers or logical operators
on an infinite plane.

Recently, in Ref. [41], a general procedure has been
discussed for generating TSSCs from parent topological-
stabilizer codes by “gauging out” appropriate anyons (see
also Ref. [33]). In brief, given a parent Abelian TO with
UMTC C that admits a gapped boundary (equivalently,
a topological-stabilizer group S), gauging out the set of
anyons Â = {am} proceeds as follows. Denote by F the
group of short string operators for the set of anyons Â.
Note that F is only Abelian if a is a boson. Gauging
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out then takes the stabilizer group S to the gauge group
G = 〈S ,F〉. This means that the short-string operators for
the anyons in Â get appended to the original Abelian gauge
group (∝ S). Physically, this means that any anyon c ∈ C
that braids nontrivially with the anyons in Â is confined,
since the short-string operators for the gauged-out anyons
do not commute with the Wilson-loop operators for c. Fur-
ther, the Wilson-loop operators for anyons in Â are now
given by products of gauge operators and if an anyon
x ∈ Â is transparent in Â, it becomes a transparent anyon
in the TSSC. This procedure is distinct from anyon con-
densation in that the gauged-out anyons are not necessarily
identified with the vacuum and so the excitations that only
differ up to fusion with anyons in Â are not identified.

With that brief review, let us return to the decohered
mixed state ρE . Following our discussion, it is clear that
locally correlated errors induced by the short-string oper-
ators for the set Â have the effect of gauging out these
anyons, since the decohered density matrix ρE (which is an
element of the code space) is stabilized by precisely those
stabilizers that commute with Oi,a [see Eq. (6)]. As viola-
tions of these stabilizers correspond to those anyons from
the parent TO C that braid trivially with anyons in Â, we
see that the decohered state has TO defined by a proper
subset of anyons,

A ≡ {b ∈ C|Bθ (a, b) = 1}, (7)

where Bθ (x, y) denotes the braiding statistics between
anyons x and y (encoded in the parent UMTC C). By
definition, G contains the short-string operators for the
set of anyons in Â: thus, their Wilson-loop operators are
given by products of gauge operators. If an anyon x ∈ Â is
invisible to all other anyons in that set, its logical oper-
ator corresponds to a nonlocal stabilizer [41], such that
it becomes a transparent anyon in the decohered theory.
Crucially, here A is an Abelian-anyon theory that can be
nonmodular and that corresponds to a TSSC. If A has no
opaque (i.e., detectable via braiding with anyons in A)
anyons but still has transparent anyons, then the resulting
mixed state is a classical self-correcting memory [52,53].
In contrast, on the torus, Wilson loops for opaque anyons in
the (generally nonmodular) Abelian-anyon theory A corre-
spond to logical operators for the TSSC and ρE can hence
encode a quantum memory.

The identification of the decohered mixed state ρE with
a TSSC provides a powerful framework within which
to study mixed-state TO, since we can leverage several
known results about the former to characterize the lat-
ter. First, we have shown that decohering anyons in the
topological-stabilizer model provides a physical mecha-
nism for gauging out anyons. Since decoherence corre-
sponds to gauging out, the results of Ref. [41], which have

established that every Abelian-anyon theory (not necessar-
ily modular) can be obtained by gauging out anyons from
Abelian twisted quantum doubles, immediately imply that
the classification of mixed-state TO is at least as rich as
that of Abelian-anyon theories. This also suggests that the
decohered states we have obtained should be viewed as
being intrinsically mixed: ρE belongs to the code space of a
TSSC, which, unlike topological-stabilizer codes, can real-
ize nonmodular and even chiral TO, the latter of which is
believed to not occur in the ground state of a locally com-
muting parent Hamiltonian in 2D [54]. It is also widely
accepted that local gapped Hamiltonians in 2D only sup-
port modular anyon theories, implying that mixed states
supporting nonmodular TO lie outside the classification of
pure-state phases of matter.

Indeed, motivated by the fact that nonmodular TO can-
not arise in the ground state of a local gapped 2D Hamilto-
nian, we say that a density matrix describes an intrinsically
mixed-state topological order (imTO) if the set of anyons
A—precisely, the associated set of Wilson-loop opera-
tors—describes a nonmodular anyon theory. Although we
have restricted ourselves to Abelian-anyon theories thus
far, in Sec. IV we will argue that the same characteriza-
tion of imTO can be made for general (i.e., non-Abelian)
anyon theories A. Let us also emphasize that the anyon
theory A does not describe the set of anyon “excitations”
(or errors) above the code space. We will elaborate on
this point in Sec. V. In Sec. VI, we will discuss how this
characterization of imTO can be reframed in the language
of generalized symmetries—namely, a density matrix has
imTO if its set of strong 1-form symmetries (i.e., the set
A) is nonmodular and thus cannot be consistently realized
in the ground state of a 2D local Hamiltonian.

At this point, it is natural to ask whether these imTO
states characterize genuine phases of matter. Indeed,
here and throughout, we focus on “fixed-point” models
obtained by subjecting fixed-point models of pure-state TO
to maximal decoherence channels. The practical defining
feature of these fixed-point states is that the Wilson loops
and hence the corresponding anyon theory A can be con-
structed explicitly, as A is a subset of the anyon theory
of the parent pure state. The question is then whether per-
turbed versions of these fixed-point states still lie in the
same phase, as characterized by the Wilson-loop algebra
of A (i.e., the set of strong 1-form symmetries to be dis-
cussed in Sec. VI). This is a subtle question, as there does
not yet exist a consensus on how to define a phase of mat-
ter for mixed states. It has been shown in the toric code
(and claimed for more general TOs) that the loss of logi-
cal information due to decoherence should coincide with
a phase transition, according to one definition of mixed-
state phases [21]. As imTO states can be distinguished
based on their logical spaces, we expect there to be a suit-
able definition of mixed-state phases that identifies these
states as genuine phases of matter. We will offer additional
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speculation on these points in Sec. VI but at no point will
we make rigorous claims about the stability of imTO.

Subjecting a 2D pure state to a locally correlated noise
channel induces TO that would otherwise require a sequen-
tial quantum circuit [40] or measurement with feedback
and we take this to be a defining feature of imTO.
An appealing perspective is then that ground states of
(nonchiral) topological-stabilizer codes furnish resource
states for the dissipative preparation of chiral (or non-
modular) TO under locally correlated noise. Given that
a large class of topologically ordered gapped ground
states can in principle be realized in quantum simula-
tors using single-shot measurement and feedback [55],
our results suggest that engineered dissipation can play
a crucial role in the preparation of quantum states with
imTO. As noted above, the decohered state ρE can in prin-
ciple encode a quantum memory (see examples below)
and the lifetime of this encoded quantum information
will remain infinite in the presence of any noise that
respects the stabilizer symmetry of the TSCC [see Eq. (6)].
Indeed, an appealing interpretation of the decohered code
space is that of a noiseless or decoherence-free subspace
[56–59], where the noise only acts within the gauge sub-
system, leaving the logical subspace intact.

III. EXAMPLES: PARENT ABELIAN TOs

With the general framework for imTO established, we
now analyze several concrete examples that illustrate our
results. In the process, we also discuss how anyon conden-
sation in the doubled Hilbert space is equivalent to gauging
out in the physical Hilbert space. As mentioned earlier,
in principle one can straightforwardly obtain any (non-
modular) Abelian-anyon theory by decohering the gauge
charges of the twisted quantum double models presented
in Ref. [41] (which also furnishes the appropriate short-
string operators and verifies that these satisfy the required
braiding and fusion properties).

A. Z
(0)
2 and Z

(1)
2 TSSC from Z2 toric code

As the paradigmatic example of a topological-stabilizer
code, the stability of the Z2 toric code to decoherence has
been extensively investigated [13,15,17,19,21]. We revisit
this problem here in light of our interpretation of the deco-
hered state as a TSSC. Consider a system of qubits placed
on the edges of a square lattice with periodic boundary
conditions, with the Hamiltonian given by

HZ2 =
∑

s

1 − As

2
+

∑

p

1 − Bp

2
,

As =
∏

i∈s

Xi, Bp =
∏

i∈p

Zi,
(8)

where s and p denote stars and plaquettes, as usual. This
Hamiltonian exhibits Z2 TO (C = Z2 × Z2), with anyons
given by the electric charge e, the magnetic charge m,
and their fermionic composite f = e × m. As a quantum
memory, the toric code supports two logical qubits, with
logical operators given by the Wilson loops of the e and
m anyons: We

x,y = ∏
i∈
x,y

Zi and Wm
x,y = ∏

i∈
̂x,y
Xi, which

satisfy {We
x, Wm

y } = {We
y , Wm

x } = 0. Here, 
x,y and 
̂x,y are
the corresponding noncontractible paths on the direct and
dual lattices, respectively.

We now consider two distinct error channels of the form
given in Eq. (3), which proliferate errors associated with
the e and f anyons, respectively:

Ei,e[ρ] = ρ + ZiρZi

2
, Ei,f [ρ] = ρ + ZiXi+δρZiXi+δ

2
, (9)

where δ = ( 1
2 , − 1

2 ) [60]. Here, the short-string operators
O are given by the operators Zi and ZiXi+δ for e and f ,
respectively.

Given an arbitrary state ρ in the ground-state manifold
of Eq. (8), we wish to characterize the decohered states
ρe,f ≡ Ee,f [ρ]. Clearly, Ee[We

x,y] = We
x,y while Ee[Wm

x,y] =
0 and so ρe only forms a classical memory with a single
bit of information encoded in each of We

x,y . Likewise, one
also finds that ρf forms a classical memory, with classi-
cal bits stored in the f Wilson loops, defined as Wf

x,y =∏
i∈
x,y

XiZi+δ . While superficially it appears that errors
have rendered the state “trivial,” we now show that ρe,f
exhibit richer structure.

Recall that since Asρ = ρAs = ρ and Bpρ = ρBp = ρ,
ground states of Eq. (8) can be interpreted as closed-loop
condensates of the e, m, and f anyons. After maximal
decoherence, we instead only have Bpρe = ρeBp = ρe and
AsρeAs = ρe. Physically, the e noise has the effect of
“freezing” the m loops (and hence also the f loops) into
a classical ensemble, while leaving the “quantum” con-
densate of e loops untouched. More precisely, e errors
break the strong 1-form magnetic symmetry of the orig-
inal pure state down to a weak 1-form symmetry, while
leaving the strong 1-form electric symmetry intact. We
will later provide a general discussion of the role that
1-form symmetries play in characterizing generic imTOs
(see Sec. VI).

One might thus be inclined to view ρe as describing a
topologically ordered state in which the only deconfined
anyon excitation is the bosonic e anyon of the parent toric
code. Indeed, in the notation of Ref. [61], a phase with
anyon content given by the vacuum and a single e anyon
corresponds to the Z

(0)
2 TO [62]. Notably, this TO is non-

modular: since e is the only nontrivial anyon in the theory,
it cannot be detected by braiding with any other anyons,
i.e., it is transparent. While nonmodular TOs cannot be
realized by topological-stabilizer models, they do arise in
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the aforementioned topological-stabilizer codes. We can in
fact make the correspondence with TSSCs precise, follow-
ing the preceding general analysis in Sec. II. The gauge
group for ρe is given by [63]

Ge = 〈i, Zi, As〉, (10)

such that the stabilizer group is given by Z(Ge) =
〈Bp , We

x,y〉. This precisely describes the Z
(0)
2 TSSC, which

is shown to exhibit the Z
(0)
2 TO in Ref. [41]. Since e is

transparent in this theory, there are no logical operators and
ρe does not encode any qubits.

Similar considerations hold for ρf . We have that
AsBs−yρf = ρf AsBs−y = ρf , where AsBs−y generates a
closed f loop and s − y denotes the plaquette to the south-
east of vertex s, while we only have that Asρf As = ρf .
Thus, f noise freezes both the e and m loops but leaves
the f loops untouched, such that ρf describes a quantum
condensate of fermionic excitations (stated otherwise, ρf
retains a strong 1-form symmetry): this is not expected
to occur in the ground state of a gapped local 2D Hamil-
tonian. Remarkably, despite starting with a bosonic TO,
decoherence has resulted in a state effectively described
as a condensate of fermions. In a rough sense, local
decoherence allows one to “peel off” half of the original
state.

Again, this heuristic interpretation can be formalized by
following our general analysis in Sec. II—the gauge group
of ρf is given by

Gf = 〈i, ZiXi+δ , As〉, (11)

which yields the stabilizer group Sf = 〈AsBs−y, Wf
x,y〉.

This precisely describes a TSSC describing the Z
(1)
2 TO

which, again, is nonmodular [41]. Like the previous case,
f is transparent (it braids trivially with itself) and hence the
decohered state encodes no quantum memory, consistent
with Ref. [31].

It will be instructive to study these mixed states through
the complementary perspective of the doubled Hilbert
space. As discussed earlier, the vectorized initial density
matrix |ρ〉〉 lies in the ground-state manifold of a bilayer
toric code, with anyon content

C × C = {1+, e+, m+, f+} × {1−, e−, m−, f−}, (12)

where the ± subscripts denote the ket and bra spaces,
respectively. In this picture, the e and f noise channels
have the effect of condensing the anyons e+e− and f+f−,
respectively, which for maximal decoherence leads to the

resulting daughter TO

Ce = {1+1−, e+, m+m−, f+m−}, (13)

Cf = {1+1−, e+e−, e+m−, f+}. (14)

It is readily apparent that the resulting TO in either case
is that of a single Z2 toric code, with the fusion group of
the Abelian anyons given by Z2 × Z2. This can also be
directly verified with the explicit forms of |ρe,f 〉〉 in the
lattice model. In light of our above stabilizer analysis, how-
ever, we note a key distinction between the mixed states
Ce and Cf . Restricting attention to anyons with support on
only the ket or bra space, we see that both orders support a
single such anyon. For Ce, this is the boson e+ ∼ e−, while
for Cf , this is the fermion f+ ∼ f−, where the equivalences
are up to fusion with the condensed anyon. This is con-
sistent with our observation in the stabilizer analysis that
under e and f noise, the sole remaining coherent closed
loops are simply those corresponding to the original e and
f anyons, respectively.

We now show that this anyon condensation across the
ket and bra spaces, at the level of the density matrix in
the original Hilbert space, corresponds to gauging out an
anyon. Recall that anyon condensation proceeds in two
steps (in Abelian theories): to condense an anyon a, one (i)
projects out from the theory those anyons that braid non-
trivially with a (i.e., they become confined) and then (ii)
identifies those anyon types that differ by fusion with a.
For instance, in the toric code, condensing e confines the m
and f anyons while e becomes identified with the vacuum:
the resulting state has no remaining anyon excitations and
is trivial. Gauging out an anyon, however, corresponds to
only performing step (i) of this process. For instance, gaug-
ing out e still confines m and f but leaves e distinct from
the vacuum, such that one is left with the anyon content
{1, e}—precisely that of the Z

(0)
2 nonmodular TO realized

via decoherence of e.
Crucially, one can also gauge out anyons that cannot be

condensed (i.e., nonbosonic anyons); analogously, one can
decohere nonbosonic anyons a, since this corresponds to
the conventional condensation of the bosonic pair (a+a−)
in the doubled Hilbert space. For instance, one may gauge
out f from the Z2 toric code to obtain the Z

(1)
2 TO, pre-

cisely replicating the effect of f errors. Surprisingly, as
this simple example illustrates, locally correlated errors
(which correspond to anyon condensation under the Choi
map) provide a physical implementation of the gauging-
out procedure, which thus far has remained a conceptual
device for generating TSSCs from topological-stabilizer
codes [32–35,41].

Let us pause to recapitulate our observations in the
context of the toric code. We have found that anyonic
decoherence, previously shown to correspond to anyon
condensation across the ket and bra spaces, implements the
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gauging out of anyons in the original Hilbert space, includ-
ing those that are forbidden from condensing under purely
unitary evolution. This process led to mixed states support-
ing nonmodular TO (corresponding to TSSCs), which is
believed to be forbidden in the ground state of a locally
gapped Hamiltonian in 2D. Thus, we claim that both
the e- and f -decohered toric codes represent intrinsically
mixed topological states of matter. However, there is an
important distinction between the two cases: namely, the
strong 1-form symmetry of the e-decohered toric code is
nonanomalous, while that of the f -decohered toric code is
anomalous. In Sec. VI, we will discuss the implications of
these anomalies and the sense in which we expect them to
characterize mixed-state phases of matter. Note that for the
specific case of the Z2 toric code subject to f errors, Ref.
[31] has numerically verified the robustness of the result-
ing imTO against finite noise channels that explicitly break
the strong 1-form symmetry.

B. Z
(1)
4 TSSC from Z4 toric code

We next consider a square lattice with d = 4 qudits on
each edge. A Hamiltonian realizing Z4 TO is given by

HZ4 = −
∑

v

(Av + A†
v)−

∑

p

(Bp + B†
p), (15)

with the star and plaquette operators defined in Fig. 2.
The ground-state manifold is determined by the constraints
Av = Bp = 1, violations of which indicate the presence of
electric e and magnetic m excitations, respectively. Explic-
itly, Zi applied to the ground state excites an e and an e−1

anyon at vertices connected by the edge i. Likewise, apply-
ing Xi creates an m and m−1 on plaquettes separated by
the edge i. These anyons satisfy Z4 × Z4 fusion rules e4 =
m4 = 1 and the braiding statistics between two composite
objects eamb and ecmd are given by Bθ (ab, cd) = iad+bc.
On the torus, the noncontractible Wilson loops We

x,y =∏
i∈
x,y

Zi and Wm
x,y = ∏

i∈
̂x,y
Xi serve as the logical oper-

ators and satisfy the algebra We
x/yWm

y/x = iWm
y/xWe

x/y , such
that the code space stores two d = 4 qudits.

Here, we consider local errors for the set of anyons gen-
erated by the e−1m anyon, Â = {1, e−1m, e2m2, em3}. The
corresponding decoherence channel is given by Eq. (3),
with the generating short-string operators O(1)

i,e−1m
, O(2)

i,e−1m
for e−1m shown in Fig. 2. Here, the group of local errors
F is precisely the group generated by the short-string
operators of e−1m (see Fig. 2).

Now, for an arbitrary state ρ in the ground-state man-
ifold of the Z4 toric code, we wish to characterize
ρe−1m ≡ Ee−1m[ρ]. In this case, let us first proceed formally.
Following the general prescription in Sec. II, the gauge
group Ge−1m = 〈S ,F〉 is given by

Ge−1m = 〈eiπ/2, Av , Bp , O(1)
i,e−1m

, O(2)
i,e−1m

〉. (16)

FIG. 2. The Z4 toric code is defined on the 2D square lattice
with a d = 4 qudit (black) on each link. The star (plaquette) sta-
bilizers are shown here in blue (red). Short-string operators for
the e−1m anyon are also shown.

The stabilizer group for the decohered density matrix
is then Se−1m = 〈AvBv+y, We2m2

x,y 〉, where v + y denotes

the plaquette to the north-east of vertex v, We2m2
x,y =∏

i∈
x,y
X 2

i Z2
i is the Wilson-loop operator for the e2m2

anyons, and AvBv+y generates a closed loop of em anyons.
This is precisely the TSSC corresponding to the Z

(1)
4

TO, which is given by the Abelian-anyon theory A =
{1, em, e2m2, e−1m−1}, in which both em and e3m3 are
semions and e2m2 is a transparent boson (it braids trivially
with all other anyons in A). This stems from the fact that
the open Wilson line operator for the e2m2 is built out of
gauge operators and commutes with all of the stabilizers
in Se−1m at its end points. The code space, stabilized by
Se−1m, has two logical operators on the torus, which are the
Wilson-loop operators of the two semions, and encodes a
single logical qubit in its logical subsystem. Thus, ρe−1,m
realizes imTO, as it is a nonmodular Abelian-anyon the-
ory that cannot be the ground state of a gapped local
Hamiltonian in 2D and also realizes a quantum memory.

Recall that the original pure state ρ satisfies Asρ =
ρAs = ρ and Bpρ = ρBp = ρ and can be thought of
as a closed-loop condensate of all nontrivial anyons
eamb. Clearly, E[Wα

x,y] = 0 for any anyons α that braid
nontrivially with anyons in Â. Since only the anyons
in A = {1, em, e2m2, e−1m−1} braid trivially with those
in Â, decoherence does not affect their Wilson loops:
E[Wb∈A

x,y ] = Wb∈A
x,y . Intuitively, decoherence has thus frozen

out the loops for any anyons /∈ A into a classical ensem-
ble, while the quantum condensate of anyons in A is left
untouched.

Said more formally, in the language of higher-form sym-
metries to be discussed in Sec. VI, Â errors break most of
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the strong 1-form symmetries of ρ down to weak 1-form
symmetries, while leaving the strong 1-form symmetries
corresponding to A anyons intact. This is encoded in Eq.
(6) and the fact that the stabilizer group Se−1m for the
TSSC is generated by small loops for the em anyon (which
generates A). Finally, since e2m2 is transparent in Â, it
remains transparent in A by definition. We thus obtain
the same result as above: the set of decohered density
matrices on the torus form the code space for a TSSC
that describes a nonmodular Abelian-anyon theory A, the
nontrivial anyons of which are two semions and a trans-
parent boson. The mutual statistics of the semions result
in this mixed state encoding a logical qubit in its logical
subsystem. Since this mixed state encodes nontrivial log-
ical information, we expect on physical grounds that it is
robust (up to a finite noise threshold) against finite-depth
local quantum channels [21,64] and so represents a gen-
uine imTO phase of matter, although, as emphasized above
and in Sec. VI, this requires careful verification.

It is instructive to once again consider the gauging-
out procedure from the perspective of the doubled Hilbert
space. In this picture, decoherence of the anyons in Â
corresponds to condensing {[1]+[1]−, [e−1m]+[e−1m]−,
[e2m2]+[e2m2]−, [em3]+[em3]−}, which form a Lagrangian
subgroup of the TO in the doubled space C × C̄, where
C = Z4 × Z4. Anyon condensation proceeds in the usual
way: each anyon from Â is identified with the vacuum.
Next, any excitation that braids nontrivially with any con-
densed anyon becomes confined and, of the remaining
deconfined excitations, any that differ only up to fusion by
anyons in Â are identified. A simple calculation shows that
the resulting TO is that of a Z4 gauge theory, with only the
following anyons supported solely on the ket space: [em]+,
and [e−1m−1]+. Meanwhile, [e2m2]+ ∼ [e2m2]− can move
freely between the ket and bra spaces and is a trans-
parent anyon. As expected, these correspond precisely to
those anyons in A obtained by applying the gauging-out
procedure in the original Hilbert space.

This example already displays much of the rich struc-
ture that emerges when anyonic errors are introduced into
a pure topologically ordered state, with the most striking
features being the presence of a robust quantum memory
alongside a nonmodular Abelian-anyon theory that is gen-
erally believed to not occur in the ground state of a locally
gapped Hamiltonian.

Equipped with the preceding understanding of the corre-
spondence between decoherence, gauging out, and anyon
condensation in the doubled Hilbert space, we now briefly
discuss two other examples that illustrate the breadth
of Abelian-anyon theories that can be “peeled off” via
decoherence. Moreover, we have established a mapping
from the space of imTOs that result from decohering a
set of anyons Â when starting from a parent topological-
stabilizer code to the space of TSSCs that results from

gauging out Â from the same parent topological-stabilizer
code. Thus, we can directly use results from Ref. [41],
which provides a thorough exploration of TSSCs. In par-
ticular, once we specify the parent TO and the set of
decohered anyons Â, we can immediately read off the
gauge group and the structure of the code space from the
results contained in Ref. [41].

C. Chiral semion from double semion

As an instance of this mapping, let us take the double-
semion-anyon theory as our parent TO. This theory can
be realized as a Pauli-stabilizer Hamiltonian [37] and its
anyons form a Z2 × Z2 group under fusion, with elements
{1, s, s̄, ss̄}. Here, s is a semion (it has self-statistics θ(s) =
i), s̄ is an antisemion (θ(s̄) = −i), and ss̄ is a boson. Now,
we subject a ground state of this system to an error channel
that incoherently proliferates the semion s, i.e., Â = {1, s}.
This corresponds to gauging out s, which braids trivially
with s̄. The resulting anyon theory for the decohered mixed
state is given by A = {1, s̄} i.e., it is the chiral (anti)semion
Abelian-anyon theory. Since s̄ has nontrivial self-statistics,
the decohered code space encodes exactly one logical
qubit; this example represents the minimal model in which
one obtains a chiral anyon theory with an encoded logical
qubit. Again, the presence of a logical qubit confers sta-
bility to this state against finite-depth local channels and it
represents a mixed-state phase of matter. While this mixed
state does not correspond to an imTO, as it is described by
a modular anyon theory, chiral UMTCs cannot arise in the
ground states of locally commuting Hamiltonians [54] and
thus cannot be realized in fixed-point wave functions (with
finite-dimensional local Hilbert spaces). Nonetheless, here
we have shown that a chiral UMTC can, in fact, arise in a
mixed state.

D. Three-fermion from Z2 × Z2 toric code

Take the initial pure state to be a ground state of
the Z2 × Z2 toric code. The anyons in this theory form
a Z

4
2 group under fusion, with elements {1, e1, m1, f1} ×

{1, e2, m2, f2}. As noted in Ref. [34], the anyon types can
be relabeled {1, f1, e1f2, m1f2} × {1, f2, f1e2, f1m2}, which is
equivalent to two copies of the three-fermion (3F) anyon
theory (f1 = e1m1 and f2 = e2m2 are fermions). The 3F
anyon theory is a chiral Abelian UMTC that contains the
anyons {1,ψ1,ψ2,ψ3}, where θ(ψi) = −1 for i = 1, 2, 3,
and with the braiding between the fermions given by
Bθ (ψi,ψj ) = −1 for any i, j = 1, 2, 3.

We now wish to “peel off” a single 3F theory (which
is a chiral Abelian UMTC) from the parent TO. For this,
we need to identify a set of anyons Â that braid trivially
only with three fermions in the parent TO. One can choose
the set Â = {1, f1, f2e1, f1f2e1}. Maximally decohering the
initial density matrix with respect to these error channels

010313-9



RAMANJIT SOHAL and ABHINAV PREM PRX QUANTUM 6, 010313 (2025)

amounts to gauging these anyons out, with the resulting
anyon theory A = {1, f2, e2f1, e2f1f2}, identical to a single
3F anyon theory. Due to the self- and mutual braiding
statistics of this theory, its logical subspace encodes two
logical qubits.

As a final remark, finite-temperature mixed states also
provide simple instances of our general framework. For
example, consider the D = 2, 3, 4 toric code at finite tem-
perature [12,65]. For D = 2, any finite-temperature state
corresponds to both the e and m anyons being inco-
herently proliferated: the resulting state hosts no decon-
fined anyons and is hence trivial. Now, in D = 3, the e
charges proliferate at any nonzero temperature but below
a critical Tc, the flux loops of the 3D toric code remain
deconfined but are now transparent. This corresponds
to a TSSC that does not encode any logical qubits in
its logical subsystem but still has a nontrivial classical
memory due to the transparent loops. Finally, for the
four-dimensional toric code, which has only looplike exci-
tations, there exist two critical temperatures: below the
first, none of the excitations proliferate and the finite-
temperature mixed state is a TSSC that is equivalent to
a topological-stabilizer code (i.e., its gauge group is pro-
portional to the stabilizer group). Hence, it represents
finite-temperature TO. Above the first but below the sec-
ond critical temperature, only one of the loop excitations
proliferates and one obtains a TSSC with a classical mem-
ory. Above the second critical temperature, all anyons
are condensed and the mixed state is topologically trivial.
Thus, prior results on TO at finite temperature are straight-
forwardly incorporated into our general framework. We
note that an infinite-temperature state with quantum mem-
ory based on a subsystem code has previously been pro-
posed in Ref. [66] and, in our framework, constitutes an
imTO.

In general, the map from decohered density matrices to
TSSCs conveniently allows one to use results regarding the
latter to obtain a partial classification of the former. In par-
ticular, since Ref. [41] has shown that any (nonmodular)
Abelian-anyon theory can be realized by a TSSC, it imme-
diately provides a partial classification of Abelian imTOs
in terms of nonmodular Abelian-anyon theories.

IV. DECOHERENCE AS GAUGING OUT IN
GENERAL UMTCs

While the precise relation between imTOs and TSSCs
can only be made in the context of Abelian-anyon theo-
ries with gappable boundaries, we expect that the general
relation between decoherence-induced imTO, anyon con-
densation in a doubled Hilbert space, and “gauging out”
anyons should hold more generally. Indeed, gauging out
a proper subset of anyons Â from a parent UMTC C is
simply anyon condensation in a doubled Hilbert space

[67], with the resulting deconfined anyons A given by
those that have support purely in the ket or bra space.
We will show through examples that gauging out Abelian
anyons in an otherwise non-Abelian theory is conceptu-
ally straightforward. Similarly, Abelian anyons can also be
gauged out from parent chiral UMTCs. This suggests the
intriguing possibility of realizing nonmodular anyon theo-
ries by appropriately gauging out anyons from a UMTC.
We schematically describe this below, leaving a complete
algebraic description for future work.

Let us assume that we always begin with a pure state
that is the ground state of some local gapped Hamilto-
nian in 2D. That is, our parent theory has TO characterized
by a UMTC C with a finite set of anyons {a}. As is well
established by now, in the doubled Hilbert space this cor-
responds to the doubled TO C × C̄, with anyons labeled
by the ordered pair ab̄ = (a+b−). Note that the TO in the
doubled space is simply the Drinfeld center of C: Z(C) =
C × C̄. The theory in the doubled space is then equiva-
lent to that of a string-net model [68], for which the input
theory is the UMTC C. In such a theory, it is always pos-
sible to condense excitations of the form (a+a−), which
are obviously bosonic [61,69–71]. In the physical Hilbert
space, this corresponds to subjecting the initial pure state
to local error channels, which can be written in terms of
short-string operators for a ∈ C.

In the doubled Hilbert space, maximal decoherence
corresponds to conventional anyon condensation [42],
whereby any anyons (r+s−) that braid nontrivially with
(a+a−) are confined and, of the resulting anyons, those
that differ only up to fusion by (a+a−) are identified. For
any non-Abelian anyons that remain deconfined, one must
also check their fusion rules: if the vacuum superselec-
tion sector appears more than once, then the non-Abelian
anyon splits into other deconfined anyons. From our pre-
ceding discussion, we know that the resulting mixed-state
TO is encoded in the set of anyons with support only on
the ket (or bra) space (the Wilson loops of the remainder
are frozen into classical ensembles). These are given by
the set A = {r ∈ C|Bθ (a, r) = 1}, of which some may be
transparent anyons, i.e., the resulting anyon theory may be
nonmodular or even chiral, both of which we have already
encountered.

Thus, we can now define gauging out anyons in the same
way as before but in a more general context: starting with
a UMTC C and a proper subset of anyons Â to be gauged
out, the resulting anyon theory (the code space of the deco-
hered theory) is given by those anyons in C that braid
trivially with those in Â. Moreover, if any anyons in Â
are transparent in Â, they remain transparent in A, which
will generically be a braided-fusion category (without the
modularity restriction). Formally, given a UMTC C and a
proper subset of objects (anyons) Â (i.e., a full subcate-
gory of C), the anyon theory A that results upon gauging
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out Â is given by the centralizer CC(Â) of Â in C:

A ≡ {x ∈ C|Bθ (x, y) = 1 ∀y ∈ Â}, (17)

which is a braided-fusion category (see Ref. [72]). One
could, in principle, then generate another braided-fusion
category by gauging out anyons from A and generate a
cascade of imTOs by iteratively gauging out anyons. As
discussed in Sec. II, we define a density matrix with imTO
as one where A is nonmodular, even in the non-Abelian
case.

We believe that this picture for obtaining braided-fusion
categories from parent UMTCs falls squarely within the
general class of mixed topological quantum field theories
(TQFTs) proposed by Zini and Wang in Ref. [73], but
where the input to the parent 2+1D Turaev-Viro- (TV)
type TQFT is always modular. In our context, this restric-
tion is physically motivated, since we take as input the
ground state of a local Hamiltonian (so the anyon theory
is a UMTC) and then subject it to local noise. In fact, note
that the doubled semion example that we have previously
considered, in which the resulting mixed state supports the
chiral-semion TO, is presented as an example of a mixed
TQFT in Ref. [73]. Specifically, in that case, the input was
the doubled semion UMTC and the output mixed TQFT
was the chiral-semion UMTC, where we can view the lat-
ter as the Reshetikhin-Turaev (RT) TQFT of the former. In
Ref. [73], this was described as “tracing” out the antichi-
ral degrees of freedom, which we believe corresponds to
the process of gauging out presented above. This supports
our claim that (unitary) nonmodular braided-fusion cat-
egories provide a partial classification of imTOs. More
generally, if the parent theory is some doubled Chern-
Simons topological quantum field theory (which admits
a gapped boundary to vacuum), one might expect that
local error channels will lead to the underlying chiral
Chern-Simons TQFT in the decohered mixed state—we
hope to investigate this general procedure in the context
of a continuum-field-theory description in a forthcoming
work. For now, we consider some simple examples that go
beyond Abelian-anyon theories to show the generality of
our framework.

A. Z
(1)
2 TSSC from chiral Ising UMTC

The chiral Ising-anyon theory consists of the anyons
{1, σ ,ψ} that satisfy the fusion algebra ψ × ψ = 1, σ ×
ψ = ψ × σ = σ , and σ × σ = 1 + ψ . Here, ψ is a
fermion and σ is an Ising anyon, the noninteger quantum
dimension

√
2 of which reflects its non-Abelian nature.

The topological spin (self-statistics) of the theory are
θ(ψ) = −1 and θ(σ ) = eiπ/8 from which, combined with
the fusion rules, one can derive the nontrivial braiding
between ψ and σ : Bθ (σ ,ψ) = −1.

A physical Hamiltonian that supports a phase with
chiral Ising TO is furnished by the Kitaev honeycomb
model [54]. We consider gauging out the ψ fermion:
since σ braids nontrivially with ψ , the resulting anyon
theory describing the decohered state is simply given by
{1,ψ}, which does not encode any quantum memory but
still yields a classical memory and retains a well-defined
fermionic excitation.

We may also consider the corresponding analysis in the
doubled Hilbert space. Here, we are condensing (ψ+ψ−)
in the doubled Ising Chern-Simons theory C × C̄. It is well
known that the condensed phase has the following decon-
fined excitations: {1,ψ+,ψ−, σ+σ−}, where σ+σ− splits
since the vacuum sector appears twice in its fusion rules:
σ+σ− × σ+σ− = 1 + ψ+ + ψ− + ψ+ψ− (where ψ+ψ− ∼
1), which is identical to the fusion (e + m)× (e + m) in
the Z2 toric code. Thus, the TO in the doubled Hilbert
space is a Z2 gauge theory, but back in the physical
Hilbert space, this corresponds to the freezing of σ loops
into a classical ensemble while ψ remains a well-defined
excitation.

B. Nonmodular imTO from doubled Ising UMTC

Building on the previous example, let us now consider a
pure state that belongs to the ground-state manifold of the
doubled Ising string net [68]. The anyons in this theory are
{1,ψ , σ } × {1, ψ̄ , σ̄ } with fusion rules that can be inferred
from those of the chiral Ising UMTC. Now, suppose that
we wish to consider ψψ̄ errors: these are induced by local
short-string operators that are explicitly provided in, e.g.,
Ref. [71]. As above, we will not delve into details of the
specific lattice Hamiltonian or the short-string operators
here, as we can directly infer the imTO of the decohered
density matrix.

Maximal decoherence of the ψψ̄ errors is equiva-
lent to gauging out this bosonic anyon. As before, only
those excitations that braid trivially with ψψ̄ remain as
deconfined anyons in the resulting decohered state. Thus,
the resulting mixed-state TO is given by the set A =
{1,ψ , ψ̄ , σ σ̄ ,ψψ̄}. Notably, this is distinct from typical
anyon condensation of ψψ̄ in the doubled Ising string net,
where ψψ̄ disappears into the condensate, ψ and ψ̄ are
identified, and σ σ̄ splits into Abelian anyons. Decohering
ψψ̄ instead results in a nonmodular imTO, character-
ized by the anyons A, amongst which ψψ̄ is transparent
[74]. We can infer the presence of a quantum memory in
the logical subsystem of the decohered code space from
the presence of nontrivial braiding between the remaining
opaque anyons in A.

C. Nonmodular imTOs from doubled SU(2)k UMTC

As a final example, we can consider doubled SU(2)k
string-net models, the lattice models and short-string
operators of which are given in Ref. [69]. Anyons
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in this theory are labeled by pairs (j1, j2), where j =
0, 1/2, 1, . . . , k/2. Let us now subject a ground state
of this model to local errors that incoherently prolifer-
ate the anyon (k/2, k/2) (which is a boson). In order
to read off the resulting imTO in the decohered den-
sity matrix, after (k/2, k/2) has been gauged out, we
require the braiding relations of this theory. In particu-
lar, the braiding between an anyon (j1, j2) and (k/2, k/2)
is given by Bθ ((j1, j2), (k1, k2)) = (−1)2(j1+j2). Thus, the
resulting imTO is characterized by the anyon theory
A = {(j1, j2)|j1 + j2 ∈ Z} with j1, j2 = 0, 1/2, 1, . . . , k/2.
Of these, (k/2, k/2) is a transparent boson, which is suf-
ficient to conclude that the decohered theory is a nonmod-
ular anyon theory.

Thus, we can obtain a large family of imTOs by expos-
ing the ground states of string-net models to local error
channels, where the decohered code space generically
retains logical information, i.e., it is a decoherence-free
subspace. The presence of nontrivial logical informa-
tion (or a quantum memory) is encoded in the Wilson-
loop algebra (equivalently, the S matrix of A). Since we
have shown that the resulting imTOs can host transpar-
ent anyons (corresponding to a nonmodular anyon theory),
we obtain a partial classification of imTO in terms of
nonmodular unitary braided-fusion categories.

V. LOCALLY DETECTABLE ANYONS

Thus far, we have characterized the TO exhibited by
mixed states in terms of their anyon data A i.e., the set of
anyons the closed Wilson loops of which remain coherent
after subjecting the original pure state to decoherence. In
the Abelian case, these correspond to the stabilizer group
and, as we will discuss below, in general these corre-
spond to the set of strong 1-form symmetries respected
by the mixed state. However, one could also character-
ize TO in terms of the distinct anyon types that remain
as locally detectable excitations outside the code space
[75]. Indeed, in pure-state TO, the detectable anyon types
are generated by open Wilson lines, which are in one-to-
one correspondence with the Wilson loops generating the
ground-state degeneracy on the torus. In contrast, while in
the present context there is no Hamiltonian and hence no
notion of an excitation gap (however, see Ref. [76]), one
may still identify states (outside the code space) with local
errors as “excited states” of the mixed state. As we now
show, if the TO characterizing the mixed state A is mod-
ular, then A also describes the set of locally detectable
anyon types. However, if A is nonmodular, then A is no
longer in one-to-one correspondence with the set of locally
detectable anyons. The physical meaning of this will be
made clearer in the following section, when we identify
imTO as corresponding to the surface of a Walker-Wang
model.

Let us consider a mixed state ρ obtained via decoher-
ence of an anyon a in a parent TO C. Then, from the
preceding discussion, ρ is characterized by the (potentially
nonmodular) TO A obtained by gauging out Â = {am}
in C. Now, let c be an anyon in the parent TO C and
Wc

x1,x2
the Wilson line operator creating c and its conju-

gate c at well-separated points x1 and x2. Likewise, let Wd



be the operator creating a Wilson loop of d ∈ C along the
contractible cycle 
. Then, we will call

ρc = Wc
x1,x2

ρ(Wc
x1,x2

)† (18)

an “excited state” relative to ρ if we can detect the presence
of c via braiding with some anyon d. That is, we wish to
compute

Tr[Wd

ρc] = Tr[Wd


Wc
x1,x2

ρ(Wc
x1,x2

)†] = Bθ (d, c)Tr[Wd

ρ],
(19)

where 
 encloses only, say, the point x1 and we have used
the braiding between anyons c and d. In order for this
expression to be nonzero, we require Wd


 to be a stabilizer
of ρ and hence d must be in A. Note that there is no such
restriction on c. However, c is an excitation if and only if
Bθ (d, c) �= 1. Note that this means that transparent anyons
in A are not locally detectable anyon types, while all of
the opaque anyons in A represent genuine quantum exci-
tations. In particular, any two anyons in the parent theory
C that remain detectable after decoherence and differ by
fusion with a transparent anyon become indistinguishable
as excitations. Thus, given an imTO A that results from
incoherently proliferating anyons in a UMTC C, the set of
locally detectable anyons is given by

L = {c ∈ C|Bθ (c, d) �= 1 for any d ∈ A}, (20)

with the identification that r ∼ r ⊗ t, where r ∈ L and t ∈
T , the set of transparent anyons. The mathematical struc-
ture underlying L remains mysterious; note, e.g., that it
need not even be closed under fusion.

In the doubled-space picture, we thus see that the locally
detectable anyon types in the original Hilbert space corre-
spond to anyons of the form (c+, c−), while the observ-
ables (namely, the Wilson loops that detect other anyons
via braiding and hence the stabilizers) are in correspon-
dence with anyons of the form (d+, 1).

Let us understand the structure of the set of locally
detectable anyons by way of a few examples. First consider
a parent TO that can be written as a product of two modular
TOs, C = A � Â and let us subject it to decoherence that
gauges out Â—the DS theory discussed above is one such
example. Since, by definition, every d ∈ A braids trivially
with every c ∈ Â, the only locally detectable and hence
genuine quantum excitations are labeled by the anyons in
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A. Thus, for a modular theory, the set of locally detectable
anyon types is in one-to-one correspondence with the
braided-fusion category A characterizing the mixed state
TO.

This correspondence does not hold for nonmodular
imTO. Indeed, let us consider the simple example of the
toric code subjected to e deocherence, yielding the Z

(0)
2

mixed state discussed above. While the Z
(0)
2 is character-

ized by the anyon content {1, e}, the e anyon does not label
a genuine quantum excitation, as it is a transparent anyon.
This is trivially seen from the fact that ZiρZi = ρ. In con-
trast, the original m and f anyons of the parent toric code
do exist as genuine quantum excitations, as they may be
detected via expectation values of We


 Wilson loops [77].
Moreover, the m and f anyons are identified as excitations
in the decohered theory, as there are no stabilizers that can
distinguish their spin.

While for a generic imTO, the anyon theory (equiv-
alently, the braided-fusion category) A describing the
mixed state ρ does not label the set of locally detectable
anyon excitations, the latter is still fully determined by the
former. As such, the set L provides a finer characterization
of the imTO, which should be a feature of all states within
the same imTO phase and not simply fixed-point states. We
elaborate on this in Sec. VI in the language of anomalies
between strong and/or weak symmetries. This framework
also clarifies how the set of locally detectable anyon types
can be determined simply by knowing the symmetries of ρ
and their associated anomalies.

VI. HIGHER-FORM SYMMETRY AND
NONUNITARY EXFOLIATION OF

WALKER-WANG MODELS

We now place our results in a broader context by char-
acterizing imTO states via their higher-form symmetry
structure [78,79], which we have already alluded to above
in specific examples, and by relating them to anoma-
lous surface states of 3D pure-state TO. First, we recall
that q-form symmetries are generated by operators acting
on a closed codimension q − 1 manifold of space-time.
In the (2 + 1)-dimensional case, 1-form symmetries thus
are both generated by, and act on, one-dimensional (1D)
looplike objects. Indeed, in a 2D TO, the Wilson loops
associated with (Abelian) anyons may be understood as
being generators of 1-form symmetries. In this language,
the nontrivial ground-state degeneracy—and hence the
nontrivial code space—of a TO on the torus is often under-
stood in terms of the spontaneous breaking of these 1-form
symmetries. For instance, the toric code possesses a Z

e
2 ×

Z
m
2 1-form symmetry, generated by the e and m Wilson

loops. Like conventional symmetries, 1-form symmetries
can be gauged, which, in the context of 2D TO, amounts

to condensing the corresponding anyon [80]. Thus, a 1-
form symmetry is anomalous if the corresponding anyon
has nontrivial self-statistics (i.e., is not bosonic). In the Z2
toric code, the Z

e
2 and Z

m
2 1-form symmetries are hence not

individually anomalous, as we may gauge either to obtain
a trivial state; correspondingly, we may condense either of
these anyons. Instead, the 1-form symmetries for e and m
have a mixed anomaly, reflecting the nontrivial braiding
between e and m, and that we cannot condense f .

In order to extend this analysis to mixed-state order, we
must distinguish between strong and weak symmetries of
a density matrix [25,81,82]. Given a unitary representation
Ug of a symmetry g in some symmetry group G, we say
that the density matrix ρ is strongly symmetric under G
if for every g ∈ G, Ugρ = ρU†

g = ρ. In the doubled-space
picture, this constraint translates to Ug+ |ρ〉〉 = U∗

g− |ρ〉〉 =
|ρ〉〉. Conversely, ρ is weakly symmetric if we only have
UgρU†

g = ρ or, equivalently, Ug+U∗
g− |ρ〉〉 = |ρ〉〉.

Let us focus on the toric code first for concreteness. The
initial pure-state TO density matrix trivially has a strong
Z

e
2 × Z

m
2 1-form symmetry. Working in the doubled-space

picture, we then see that the Z
(0)
2 imTO resulting from e

decoherence still has a strong Z
e
2 1-form symmetry gen-

erated by Wilson loops associated with the anyon e+ but
only a weak Z

m
2 1-form symmetry, generated by m+m−.

Indeed, in each of the examples we have studied, we see
that decoherence has a nontrivial effect on the underlying
strong 1-form symmetries of the parent TO. We can thus
rephrase our results for generic Abelian TOs in the lan-
guage of 1-form symmetry: when gauging out an anyon a
via decoherence, the resulting imTO density matrix retains
strong 1-form symmetries for those symmetries generated
by anyons that braid trivially with a, while the remaining 1-
form symmetries are reduced to weak symmetries. In other
words, only those 1-form symmetries that do not have a
mixed anomaly with the 1-form symmetry generated by
Wilson loops of a remain as strong 1-form symmetries,
while the remainder are reduced to weak symmetries. As
noted previously, in the TSSC framework, the strong 1-
form symmetries of the decohered state are manifest in Eq.
(6), where the stabilizers may be viewed as closed Wilson
loops for the deconfined anyons. This observation fur-
ther reinforces the idea that the logical subsystem forms a
decoherence-free subspace under local noise that incoher-
ently proliferates certain anyons, namely, those affecting
only degrees of freedom in the gauge subsystem.

In this language, we can hence rephrase our character-
ization of imTO as follows: a density matrix ρ exhibits
imTO if its set of strong 1-form symmetries form a non-
modular anyon theory—i.e., its set of strong 1-form sym-
metries cannot be consistently realized in the ground state
of a gapped local 2D Hamiltonian. The 1-form symmetry
structure of imTOs provides a useful language for charac-
terizing the utility of these states as quantum memories.
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Note that each strong 1-form symmetry implies the exis-
tence of nonlocal operators commuting with the stabilizer
group—the corresponding anyon Wilson loop along the
noncontractible cycles of the torus. We may then employ
the anomalies of the 1-form symmetries to characterize the
structure of the code space. Specifically, if two strong 1-
form symmetries have a mixed anomaly, they give rise to
a pair of logical operators and hence a quantum memory,
as in the Z

(1)
4 TSSC. If a strong 1-form symmetry has no

mixed anomalies but has a ZN anomaly with N > 2, its
corresponding Wilson loops along the two cycles of the
torus also yield logical operators and a quantum mem-
ory, as in the chiral-semion TSSC. Finally, if a strong
1-form symmetry has no mixed anomalies and at most a
Z2 anomaly (i.e., it is either a boson or fermion), its corre-
sponding noncontractible Wilson loops only yield nonlocal
stabilizers, thus yielding a classical memory. Higher-form
symmetries thus provide a convenient language with which
to characterize the TSSC structure of Abelian imTOs.

Indeed, the mixed anomalies between strong and weak
1-form symmetries play a central role in determining the
set of locally detectable anyons L in the imTO. In par-
ticular, any strong 1-form symmetry of a state ρ that
has a ZN self-anomaly (with N > 2) is associated with
a locally detectable anyon. If any strong 1-form sym-
metries have a mixed anomaly, they too correspond to
anyons in the imTO. One can think of such anomalous
strong 1-form symmetries as corresponding to A\T , i.e.,
the anyons in the (generically nonmodular) braided-fusion
category A minus the set of transparent anyons T in
A. Finally, weak 1-form symmetries that have a mixed
anomaly with a strong 1-form symmetry also correspond
to locally detectable anyons (see Sec. V); while the trans-
parent anyons do not have any self-anomalies (with ZN>2)
or mixed anomalies with other strong symmetries, they can
have mixed anomalies with weak 1-form symmetries and
therefore influence the structure of L. Hence, the anomaly
structure of the strong and weak symmetries of a short-
range correlated 2D mixed state ρ provides a detailed
characterization of the corresponding imTO.

There is also a striking analogy between imTO and
anomalous surface states of certain pure-state 3D TOs,
which suggests potential generalizations of our scheme
to other intrinsically mixed states. This also allows us to
generalize the discussion from the preceding paragraph to
the non-Abelian case. As we have emphasized throughout,
imTO generally supports chiral and nonmodular TO in a
purely 2D system. In the context of local gapped Hamil-
tonians, such states naturally arise at the 2D surfaces of
3D TOs, specifically those realized in the WW models
[43]. These are 3D exactly solvable lattice models, which,
given a potentially nonmodular TO A, realize A as its sur-
face theory. In particular, if we consider a slab geometry
with open boundary conditions in, say, the z direction, one
obtains A on the top surface and Ā on the bottom surface.

If A is modular, then the bulk has trivial TO. Conversely,
if A is nonmodular, then the bulk is topologically ordered
and supports both pointlike and looplike excitations, gen-
erated at the ends of Wilson lines and edges of Wilson
surfaces, respectively, which braid nontrivially with each
other. These looplike excitations can be absorbed by the
surfaces. Importantly, the transparent anyons in A also
correspond to deconfined pointlike excitations in the bulk
and so can freely move from the top A surface into the
bulk, and onto the bottom Ā surface. Additionally, a “tube-
like” Wilson surface stretching between a loop on the top
surface and a loop on the bottom surface serves as a sym-
metry of the ground state, as the looplike excitations are
condensed on the surfaces.

Remarkably, this structure exactly parallels that of the
vectorized density matrix for an imTO in the doubled
Hilbert space, with the ket and bra spaces identified with
the top and bottom surfaces of a WW model. Much like the
surface states of WW models, the deconfined excitations
with support solely on the ket (or bra) space can real-
ize nonmodular or chiral TO. The aforementioned weak
1-form symmetries (which act simultaneously on the ket
and bra spaces) mirror the effect of the tubelike Wilson
surfaces in the WW model, when they terminate on the
top and bottom surfaces. Moreover, in the doubled Hilbert
space representation of the imTO, the transparent anyons
can move freely between the ket and bra spaces, just as the
transparent anyons in the WW model can move between
the top and bottom surfaces. Indeed, in the doubled Hilbert
space, if we condense (a+a−), all anyons of the form
(am

+1−) (for integer m) are transparent and are equiva-
lent to anyons of the form (1+am

−) via fusion with the
condensate.

This picture also provides a convenient way of under-
standing the set of detectable anyons discussed in Sec. V.
Indeed, focusing on a single surface of a WW model in
a slab geometry, there are two classes of surface exci-
tations that can be detected via braiding with anyons in
the surface-anyon theory A—i.e., detectable via comput-
ing the expectation value of a closed Wilson loop of an
anyon d ∈ A. The first are the opaque anyons in A, gen-
erated by open Wilson lines on the surface; by definition,
the transparent anyons are undetectable via braiding with
anyons in A. The second class is generated by open Wil-
son surfaces in the bulk, the boundaries of which intersect
the surface on an open line—the end points correspond to
pointlike excitations on the surface [83]. These are in one-
to-one correspondence with the tubelike Wilson surfaces
mentioned above. These two sets of surface excitations
exactly correspond to the detectable anyons of the imTO
characterized by A discussed previously. Indeed, in the
analogy with the double-space picture, the two sets of exci-
tations in the WW model correspond to anyons of the form
(c+, c−) such that c braids nontrivially with some d ∈ A;
the genuine surface Wilson lines in the WW model map to
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those anyons in the double space such that c braids trivially
with the set of gauged-out anyons Â, while the bulk Wil-
son surfaces generating surface excitations map to those
anyons in the double space such that c braids nontrivially
with Â.

Thus, at least at the level of analogy, decoherence-
induced imTO provides a physical means of realizing
anomalous surface states of 3D pure-state TO as real-
ized by WW models. This lends further credence to our
claim that a partial classification of imTOs is provided
by nonmodular unitary braided-tensor categories, since the
classification of WW models includes these. One may
view decoherence as a means of “exfoliating” surface
states of a 3D TO into a purely 2D mixed state via finite-
depth LPQCs. Indeed, we can also imagine applying such
nonunitary exfoliation to isolate anomalous surface states
of other exotic pure states, an avenue we intend to pursue
in future work.

A. imTO phases

Finally, let us comment on the extent to which the
imTOs that we have discussed thus far constitute genuine
mixed-state phases and not simply fixed-point states. We
note that this is a subtle question, as there is as of yet no
consensus on what constitutes a mixed-state phase of mat-
ter. This requires a sharp notion of an equivalence relation
that determines when two density matrices lie within the
same phase and there exist several proposals in the liter-
ature [14,21,76,84,85]. For simplicity, we restrict to the
Abelian case here. As we have emphasized, the 1-form
symmetries (strong and weak) and their associated anoma-
lies encode both the braided-fusion-category data A as
well as the locally detectable anyon types L. As such, these
should constitute invariants of a given mixed-state phase,
which, in the case of a nonmodular A, provides an instance
of an imTO phase.

Consider the “two-way connectivity” relation described
in Ref. [21]: namely, two short-range correlated mixed
states, ρ1 and ρ2, are in the same mixed-state phase if
there exist quasilocal quantum channels �12 and �21 such
that ρ1 = �12ρ2 and ρ2 = �21ρ1 (for a precise definition
of a quasilocal channel, see Ref. [21]). Physically, this
relation encodes the fact that while such channels can triv-
ialize long-range correlations, they cannot create them in
an arbitrarily short amount of time. Now, note that the
Z
(0)
2 imTO (obtained from Z decoherence of the Z2 toric

code) can be considered to be a purely classical state.
Indeed, it is completely separable. Further, when defined
on a spatial manifold with trivial genus—the plane or the
sphere—one can show that this state is two-way connected
to a trivial product state and hence, under the equivalence
relation of Ref. [21], belongs to the trivial phase. How-
ever, as discussed in Sec. V, there exist local detectable
excitations (i.e., errors) above this state, which reflect the

mixed anomaly between the strong electric and weak 1-
form symmetries. Moreover, when placed on a torus, the
corresponding code space encodes two classical bits of
information; while we do not have an explicit proof, this
fact suggests that certain states within the code space
cannot be two-way connected to the trivial state via a
finite-depth local quantum channel on the torus.

More generally, on physical grounds we expect that log-
ical information (encoded in anomalies between the strong
1-form symmetries) will remain robust under quasilocal
quantum channels, since these satisfy a Lieb-Robinson
bound and cannot generate arbitrary long-range correla-
tions that destroy this information at infinitesimally small
noise rates [64]. On the other hand, classical information
(encoded in the mixed strong-weak 1-form anomalies) can
be smoothly erased as already seen in the above example.
Equivalently, the transparent anyons need not be preserved
and, since these are required to capture the complete set of
locally detectable anyon types, the set L is not an invariant
under this definition of a mixed-state phase. Note that this
subtlety does not arise when A is modular (since L = A)
and only exists for intrinsically mixed states. Therefore,
we contend that a finer equivalence relation is required to
accurately describe the invariant data of imTO phases and
to distinguish between “classical” imTO phases (such as
the Z

(0)
2 toric code) from purely trivial states. For instance,

an equivalence relation based on the Markov length under
local Lindbladian evolution could provide an alternative
definition for mixed-state phases [76]. We leave a detailed
investigation of this matter to future work and speculate no
further.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have proposed a framework for clas-
sifying a large family of intrinsically mixed-state TO,
obtained via local decoherence of parent pure-state TO.
We have demonstrated that local decoherence, previously
shown to correspond to anyon condensation in the vector-
ized density matrix obtained via the Choi-Jamiołkowski
isomorphism, in fact provides a physical mechanism for
the gauging out of anyons. As a consequence, for parent
Abelian TO, the resulting imTO is naturally characterized
as a TSSC and thus classified in terms of (degenerate)
braided-tensor-category theory. Hence, 2D pure-state TOs
provide resource states, under local decoherence, for the
preparation of nonmodular and even chiral states. We have
also illustrated that this procedure naturally extends to
non-Abelian states, though the resulting imTOs are no
longer identified as TSSCs. Finally, we have characterized
the family of imTOs under consideration by their strong
and weak 1-form symmetries and demonstrated that they
correspond to the anomalous surface states of 3D pure-
state TOs—to wit, WW models. This provides a natural
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interpretation of decoherence as a means of nonunitar-
ily exfoliating surface states of topological states in one
higher dimension, a perspective that may find use in gener-
ating other classes of intrinsically mixed phases of matter.
Our general framework provides many exciting avenues
for further exploration, some of which we address in
forthcoming work.

As we have discussed in Sec. VI, perhaps the most
outstanding question is to establish an equivalence rela-
tion on the space of short-range correlated mixed states in
2D that provides a clear notion of imTO phases. Based
on our work, we expect that all states within the same
phase should share the same 1-form anomaly structure,
with imTO phases distinguished by the presence of non-
modular strong 1-form symmetries. Importantly, these data
encode not only the (nonmodular) braided-fusion category
A but also the set of locally detectable anyons L. Since an
equivalence relation that requires two-way channel con-
nectivity [21] is only sensitive to the logical information
(i.e., anomalies between strong 1-form symmetries), a finer
diagnostic is required to also capture the classical infor-
mation (i.e., mixed strong-weak 1-form anomalies). It is
unclear whether requiring two-way channel connectivity
on any closed manifold will suffice or if the equivalence
relation based on the Markov length along local Lindblad
evolution [76] is more suitable.

A pressing issue is to characterize our family of imTOs
via their entanglement structure. While the entanglement
entropy has previously been studied in mixed-state TO
[65,86], a more natural probe of entanglement in mixed
states is the entanglement negativity, which, unlike the
entanglement entropy, is a good measure of quantum corre-
lations in a mixed state [87–91]. In pure-state TO, the neg-
ativity receives universal contributions that are sensitive
to the modular data of the TO (namely, the total quantum
dimension) [12,92–97]. This TEN has also been shown
to be sensitive to the breakdown of TO in thermal states
[12,98], which the entanglement entropy does not accu-
rately reflect. Since we have shown that imTO is gen-
erally characterized by nonmodular anyon theories, it
is an intriguing question as to what universal data the
TEN captures in these states. In one specific instance,
Ref. [31] has distinguished between the Z

(0)
2 and Z

(1)
2

imTOs (obtained via decoherence of the Z2 toric code)
by the respective absence and presence of topological
contributions to the negativity. Recalling that these two
states correspond to quantum condensates of bosonic
and fermionic loops, it is tempting to conjecture that
the TEN remains sensitive to the spins of the under-
lying deconfined anyon excitations. In the future, we
intend to address more comprehensively the connection
between TEN and the braided-tensor-category structure
of imTO. It would likewise be interesting to under-
stand novel decoherence-induced negativity transitions
[16,31,99,100] that may result from (competition between)

the different decoherence channels discussed in this
work.

While the entanglement negativity is a good measure
of bipartite entanglement, it has recently been understood
that pure-state TO can be more finely characterized by its
tripartite entanglement structure [101–108]. Specifically,
it has been argued that chiral TO supports tripartite entan-
glement beyond that of the Greenberger-Horne-Zeilinger
(GHZ) type [101,102,108]. As we have shown, decoher-
ence of the double-semion state can induce a mixed state
characterized by the chiral-semion TO. Intriguingly, this
suggests that decoherence has transmuted one form of
many-body tripartite entanglement (i.e., GHZ-like entan-
glement) into another. It is conceivable that nonunitary
processes may stabilize patterns of multipartite entangle-
ment in many-body systems that do not arise naturally in
the ground states of local gapped Hamiltonians. Under-
standing in more detail the multipartite entanglement of
imTOs and the transmutation between different classes of
entanglement via nonunitary processes promises to be a
fruitful direction for further research. In a similar vein,
Ref. [109] has recently argued that a state that is strongly
symmetric with respect to an anomalous 0-form symmetry
in 2D must be 4-partite nonseparable. It is an intrigu-
ing question whether similar constraints exist for systems
respecting an anomalous strong 1-form symmetry (for a
recent discussion, see Ref. [110]).

In the spirit of fleshing out the structure of the family
of imTOs that we have obtained, an important avenue for
further development is a more thorough classification of
non-Abelian imTO. While we have demonstrated that the
process of gauging out via decoherence extends naturally
to the non-Abelian case, we do not yet have a compre-
hensive understanding of the algebraic structure of the
resulting imTO, although we have provided compelling
evidence that the appropriate mathematical framework is
that of nonmodular braided-fusion categories. To that end,
it would be prudent to understand more fully the con-
nections with the mixed TQFTs proposed by Zini and
Wang [73]. In particular, it remains to be understood
whether the class of mixed TQFTs proposed in that work
can be realized in a physical setting, i.e., by exposing
some parent state to local noise. On a related note, it
would be interesting to understand whether there exists
a nonequilibrium continuum-field-theory formulation for
describing generic imTO, most likely in the language of
the Schwinger-Keldysh path integral.

The general framework that we have developed also has
potential exciting applications beyond the context of 2D
mixed-state TO. An obvious extension is to incorporate
the ground states of 3D local gapped Hamiltonians into
our framework and study the resulting decohered mixed
states. Our picture of decoherence in d dimensions as
nonunitary exfoliation of anomalous surface states of (d +
1)-dimensional systems suggests a route toward realizing
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anomalous 3D TOs [111–113] via local noise channels,
where these states generically host transparent looplike
excitations (in analogy with the transparent anyons in our
imTOs). We also expect that 3D fracton orders can be pre-
pared by subjecting a 3D stack of 2D TO layers to an
appropriate noise channel. Second, it is natural to consider
the possibility of replacing correlated decoherence with
correlated disorder; as in the context of intrinsically aver-
age SPTs stabilized by disorder [20,26], one may expect
intrinsically average TO, the classification of which would
likely be similar to, but distinct from, that of imTO.

We conclude by commenting on practical implications
of our work for imTO in open quantum systems. Cur-
rently, preparing states with chiral TO requires sequential
quantum circuits [40] and, although unproven, it is widely
believed that no finite-depth quantum circuit can disentan-
gle such states from the surface of a 3D WW model; e.g.,
Ref. [39] has proved that either there exists a commuting
projector Hamiltonian for the 2D chiral-semion TO (which
Ref. [1] argued should not exist) or that the circuit that
disentangles this TO from the surface of a 3D WW is not
finite depth. On the other hand, single-shot measurement-
and-feedback protocols for preparing ground states with
Abelian TO have recently been proposed [55]. Our results
thus open the door toward the dissipative preparation of
chiral TOs using finite-depth LPQCs: given a parent TO
that can be prepared using a single-shot measurement-
and-feedback circuit, we have shown that appropriately
engineering a locally correlated noise channel can lead to
chiral imTO. Surprisingly, since the doubled state in our
construction can always be represented as a fixed-point
projected entangled-pair state (PEPS) with finite bond
dimension, as we have a topological-stabilizer code in the
doubled space, our work also indicates the existence of a
fixed-point projected entangled-pair operator (PEPO) rep-
resentation for density matrices exhibiting chiral TO (with
finite bond dimension). This is an intriguing implication,
as it is widely believed—though not proven—that there do
not exist exact PEPS representations for (interacting) chiral
topological pure states.

More generally, we can imagine beginning from a topo-
logically ordered pure state that can be efficiently pre-
pared using existing protocols. Exposing such a state to
noise channels will generically decrease its encoded logi-
cal information (as in each of our examples), such that the
resulting decohered state represents a genuinely distinct
phase of matter [14,21]. Heuristically, this is clear since no
quasilocal recovery map can reconstruct the logical infor-
mation stored in the parent state. We can then imagine a
cascade of descendant TOs that be prepared from a parent
state by carefully selecting error channels that gauge out
anyons in a prescribed manner. This suggests a classi-
fication of mixed-state phases of matter in terms of the
complexity of their code space, whereby no state in the
sequence can recover the information of a precursor via

LPQCs. Understanding the appropriate equivalence rela-
tion on the space of mixed states is a question we intend to
address in a future work.

Note added.—We have recently been informed about
Ref. [114], which also addresses mixed-state topological
order.
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