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With Behaviors Like These in
Complex Systems, Who Needs
Mechanisms?
A new study of complex systems supports a growing trend that focuses
more on analyzing a system’s collective behavior rather than on trying to
uncover the underlying interactionmechanisms.

By Daniele Marinazzo

W hen observing a flock of starlings swirling through
the sky in perfect coordination—a phenomenon
known as murmuration—we witness the elegant

interplay of individual actions creating collective behavior. In
trying to understand these mesmerizing patterns, researchers
can isolate simple rules based on an individual bird’s field of
vision and distance to its neighbors, but there’s always a
question of whether the model is really capturing the processes
behind the bird interactions (Fig. 1). The problem is a general
one in complex systems research, and it comes down to
distinguishing mechanisms (the rules governing interactions)
from behaviors (the observable patterns that emerge).

Figure 1: In bird flocks, each bird chooses its motion based on the
separation distance and flight orientation of its neighbors (left).
These simple rules can produce complex patterns, such as the
“murmurations” of starlings (right). New research explores how
mechanisms (individual rules) relate to behaviors (collective
patterns) in networks that represent complex systems.
Credit: APS/Alan Stonebraker; Airwolfhound

A good way to study mechanisms versus behaviors is through
representative networks of interacting individuals, or nodes.
Traditionally, researchers have focused on pairwise
interactions, but many systems also include higher-order
interactions betweenmultiple nodes. What impact these
higher-order mechanisms have on behaviors has been unclear.
Thomas Robiglio from the Central European University in
Vienna and colleagues have now addressed this issue by
considering networks with higher-order interactions and
evaluating the resulting behaviors in terms of statistical
dependencies between the node values [1]. The researchers
identified higher-order behavioral signatures that—unlike their
pairwise counterparts—revealed the presence of higher-order
mechanisms. Their findings open newways for distinguishing
betweenmechanisms and behaviors when studying complex
systems [2]—a distinction that is crucial when approaching
inference across network science, neuroscience, social
sciences, and beyond.

The traditional approach to understanding complex systems,
however, often blurs this distinction, treating behaviors as
proxies for the underlying mechanisms. In neuroscience, for
instance, researchers often criticize functional connectivity
(statistical dependencies between brain regions) as an
improper stand-in for actual neural pathways. This problem of
treating behaviors as proxies for mechanisms has been
described in terms of the famous logical fallacy of confusing the
map with the territory [3].
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The inference problem lies at the heart of this muddling:
Researchers typically observe behaviors but not mechanisms.
When they measure correlations or more sophisticated
statistical dependencies, they’re probing for potential
underlying mechanisms following some hypotheses. However,
the relationship betweenmechanisms and behaviors is
complex and often nonintuitive. Multiple different mechanisms
can produce identical behaviors, and simple mechanisms can
generate complex behaviors (and vice versa). This
many-to-manymapping presents a fundamental challenge for
scientific inquiry.

Robiglio and colleagues addressed a part of this challenge by
focusing on higher-order mechanisms in large networks, where
nodes are connected through a set of interactions. As the
interactions are higher-order ones, the mechanistic links are
represented not by pairwise lines but by multiconnection
polygons (called simplicial complexes). The researchers
considered two representative networks: one that deals with
magnetic spins (a higher-order Ising model) and another that
tracks the spread of ideas (a so-called social contagionmodel).
The team ran simulations for both cases and observed the
patterns of statistical dependencies that emerged.

To analyze the results, Robiglio and colleagues used ameasure
based on the entropy of multivariate distributions, called
dynamical O-information [4]. With this measure they could
quantify the extent to which the observed patterns were due to
higher-order mechanisms. This was particularly evident for
statistical synergy—where information about a system of three
variables can only be recovered by considering all elements
together. An example of synergistic behavior is a frustrated spin
system, a magnetic arrangement where competing interactions
between neighboring spins make it impossible for all pairs to
simultaneously achieve their preferred relative orientation.

The researchers showed that the synergistic
signatures—identified through the dynamical O-information
measure—could not be detected using traditional pairwise
methods such as correlations andmutual information.
Importantly, as the strength of higher-order mechanisms
increased, so did the synergistic behavior, but in a complex,
nonlinear relationship that varied between systems. This
relationship provides new guidance in how to use higher-order
statistical dependencies—such as the dynamical

O-information—to study complex dynamical systems in the
presence of higher-order mechanisms.

There’s also a lesson here for the traditional approach that
would try to extract the underlying mechanisms from the
observed pairwise behaviors. Robiglio and colleagues showed
that this strategy can lead to unexplained statistical
dependencies, which are often called “spurious” correlations.
Yet, if we truly embrace the study of behaviors on their own
terms, recognizing the inherent limitations of our methods,
then no behavior is truly spurious. The problem is not with the
unexplained behaviors but with an insistence on reconstructing
the complete set of interaction mechanisms—often an
impossible task. In fact, accurate predictions can often bemade
without full knowledge of the mechanisms. For example, it has
been shown that the collective dynamics in some interaction
networks can be predicted even without knowing all the
interactions [5]. Similarly, social triangles (a friend of a friend is
my friend) can be explained with a simplified set of interactions
[6]. Rather than trying to force a mechanical interpretation on a
system, a better focus would be on identifying the behavioral
signatures that constrain possible mechanisms.

It’s crucial to emphasize, however, that mechanisms remain
indispensable for predicting how a systemwill respond to a
perturbation or to an intervention. For example, how birds flock
in low visibility (foggy) conditions or how ideas spread as new
forms of communication develop. While behaviors may be
sufficient for prediction in some cases, understanding causal
mechanisms—through the development of mechanism-based
(generative) models—becomes essential when designing
interventions or control strategies. This balance between
studying behaviors for prediction andmechanisms for
intervention represents a more nuanced approach than simply
favoring one over the other.

This balanced approach connects closely with the statistical
inference perspective, which assumes that the actual network
structure is hidden andmust be reconstructed from
observables [7]. This perspective treats the inferred model as
the crucial link between data and abstraction, allowing us to
articulate prior knowledge and test hypotheses in a formal
framework. By embracing the different levels of
complexity—the often unobservable target properties, the
observables and their dependencies, and the statistical
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inference model—we canmore fully appreciate the dancing
flocks that we encounter in our scientific forays.

Daniele Marinazzo: Department of Data Analysis, Ghent University,
Ghent, Belgium
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