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Drilling into Neutron Stars with

Computers

Simulations of neutron stars provide new bounds on their properties,

such as their internal pressure and their maximum mass.

By Paul Romatschke

tudying neutron stars is tricky. The nearest one

is about 400 light-years away, so sending a probe would

likely take half a million years with current space-faring
technology. Telescopes don’t reveal much detail from our
vantage point, since neutron stars are only the size of a small
city and thus appear as mere points in the sky. And no
laboratory on Earth can reproduce the inside of neutron stars,
because their density is too great, being several times that of
atomic nuclei. That high density also poses a problem for
theory, as the equations for neutron-star matter cannot be
solved with standard computational techniques. But these
difficulties have not stopped efforts to understand these
mysterious objects. Using a combination of theory-based
methods and computer simulations, Ryan Abbott from MIT and
colleagues have obtained new, rigorous constraints for the

Figure 1: The neutron star in the Crab Nebula, as seenin a
combination of x-ray, optical, and infrared wavelengths.
Credit: NASA; CXC; SAO; STScl; JPL; Caltech

properties of the interior of neutron stars [1]. Their results
suggest a relatively high upper bound on the speed of sound
inside these compact objects, which could mean that neutron
stars can grow more massive than previously thought.

A neutron star’s internal properties—such as pressure and
density—are governed by the equations of quantum
chromodynamics (QCD), which describes the strong force that
acts on protons, neutrons, and their constituent quarks. So if
the equations are known, why is it so difficult to solve them in
the case of neutron stars? The problem stems from the fact that
our go-to calculation tool is perturbation theory, in which we
expand the equations in terms of a small parameter (allowing
higher-order terms to be ignored). For neutron-star matter,
perturbation theory is a viable strategy in certain regions: in the
outer atmosphere and upper crust, where the density is
relatively small [2], and in the core of the most massive neutron
stars, where the QCD coupling parameter is small [3]. But in the
bulk of neutron stars, where the density is between those two
extremes, perturbation theory fails. (Researchers can
interpolate between low and high densities, but the results are
imprecise [4].)

Fortunately, physicists have another tool at their disposal:
lattice QCD. This numerical method treats quark and gluon
interactions on a discretized space-time lattice, which makes
QCD amenable to being simulated on a computer. At small
densities, QCD can be solved directly with this method, but
lattice QCD breaks down at the neutron star densities of
interest. There is a clever way, however, to draw a box around
this problem. It involves using isospin—a type of nuclear charge
that treats protons as positive and neutrons as negative. Most
nuclear matter has roughly equal numbers of protons and
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neutrons, so the isospin density is close to zero. But one can
imagine a state of matter with large (or “nonzero”) isospin
density, in which protons greatly outnumber neutrons. Prior
work has shown that the pressure of nuclear matter—at any
density—must be lower than the pressure of nuclear matter at
nonzero isospin density [5, 6].

Abbott and his colleagues have used this upper pressure limit to
“drill” down into the high-density regions of a neutron star and
recover rigorous results [1]. The team performed extensive
numerical lattice QCD simulations for nonzero isospin density
simultaneously on several of the most powerful
supercomputers. Even with that much computing power, a
direct solution for the equation of state for isospin nuclear
matter was not possible, because lattice QCD assumes a
discrete space-time, whereas the “real world” is continuous. To
obtain systematically controlled results, the group performed a
careful extrapolation of their computer simulations to the
“continuum limit” of vanishingly small lattice spacing, which
had never been done before for nonzero-isospin nuclear matter.

With the nonzero-isospin computations at hand, Abbott and
colleagues were able to obtain several new key results about
the properties of extreme-density matter. First, they showed
that nuclear matter at high isospin density is a type of
superconducting material, and they determined its
superconducting gap—a parameter that characterizes the
potential energy of the system. For this gap calculation, they
took the difference between their computed pressure and the
known pressure for nonsuperconducting matter [4], arriving at
avalue that agrees with (but is more precise than) the value
that others have obtained using analytic calculations [7].

Second, the researchers demonstrated unambiguously that the
speed of sound in nonzero-isospin nuclear matter exceeds a
speed limit known as the conformal bound [8], but it stays
below a more recently proposed speed limit [9]. This result has
implications for the maximum mass a neutron star can have
before collapsing into a black hole under its own weight. This
maximum mass is capped by the maximal speed of sound in
nuclear matter, so violating the conformal bound—as Abbott
and colleagues have shown—means that neutron stars can
conceivably grow larger than the 2-solar-mass limit that was
previously derived on the basis of the conformal bound.
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Finally, by using the rigorous relations between the pressure
inside neutron stars and nonzero-isospin nuclear matter [5, 6],
the researchers were able to put rigorous bounds on the
properties of matter inside neutron stars. The importance of
these bounds is hard to overstate. Having rigorous and precise
results available for nonzero-isospin nuclear matter provides a
highly nontrivial test bed for a large variety of models and
approximation methods. Modelers continue to come up with
new proposals on how to approximate the matter inside
neutron stars, and now they can check their models against
these bounds.

This approach is not limited to nonzero-isospin nuclear matter.
Already, there are proposals to use other kinds of lattice QCD
calculations to drill even more deeply into the properties of
neutron stars [10]. Thus, the results by Abbott and colleagues
have opened the door to a whole new subfield of
computational studies of neutron-star matter. Further
extensions of this work hold the promise of giving us constraints
on more refined properties of nuclear matter, such as viscosities
and conductivities, which are relevant for understanding the
spin down and cooling of neutron stars. When this fuller picture
arrives, lattice QCD will be able to directly interpret and possibly
predict astrophysical observations. The future of drilling down
into neutron stars with computers looks bright, indeed.

Paul Romatschke: Department of Physics, University of Colorado
Boulder, Boulder, CO, US
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