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Nobel Prize: Mimicking Human
Intelligence with Neural
Networks
The 2024 Nobel Prize in Physics honors pioneering work on artificial
neural networks, which provided the foundation for many of the artificial
intelligence technologies in use today.

10 October 2024: We have replaced our initial short
announcement with this full-length news story.

Certain processes in the brain, such as recognition and
classification, can bemodeled as interactions of artificial
neurons, or “nodes,” in a highly interconnected network. This
physics-inspired approach to human learning has been
recognized with the 2024 Nobel Prize in Physics. John Hopfield
from Princeton University and Geoffrey Hinton from the
University of Toronto share this year’s prize for their work on
artificial neural networks, which have become the basis of
many artificial intelligence (AI) technologies, such as facial
recognition systems and chatbots.

The 2024 physics Nobel laureates developed the earliest forms of
artificial intelligence (AI) by modeling neurons in the brain. This
image was generated by AI.
Credit: Vladlena Demidova/Stock.adobe.com

An artificial neural network is a collection of nodes, each of
which has a value that depends on the values of the nodes to
which it’s connected. In the early 1980s, Hopfield showed that
these networks can be imprinted with a kind of memory that
can recognize images through an energy-minimization process.
Building on that work, Hinton showed how the couplings
between nodes could be tuned (or “trained”) to perform
specific tasks, such as data sorting or classification. Together,
the contributions of these physicists set the stage for today’s
machine learning revolution.

Neurons in the brain communicate with each other through
synapses, and the number of synapses connected to any given
neuron ranges from a handful to several thousand. Early studies
in the 1940s showed that the firing activity of a particular
neuron—the electrical pulses it generates—depends on the
inputs received from connected neurons [1]. Moreover,
connected neurons that fire simultaneously can develop
stronger mutual connections, eventually leading to memories
that are encoded in the relative synaptic strengths [2]. Many
researchers became interested in reproducing this neural
behavior in digital networks in which nodes replaced neurons
and couplings replaced synapses. But solving real problems
with these artificial neural networks proved computationally
challenging.

In 1982, Hopfield opened a way forward [3]. He proposed a
simple network based onmany-body physical systems, such as
the atomic spins inside a magnetic material. In analogy with a
neural network, each spin (or node) has a specific value based
on its orientation, and that spin value can affect nearby spins
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Neurons in the brain are connected through synapses. One popular
model of learning is that these connections become stronger (or
weaker) depending on the correlated activity of the two connected
neurons. Artificial neural networks are built on the principle that
the strengths of connections between nodes can be tuned to
produce a desired result.
Credit: J. Jarnestad/Royal Swedish Academy of Sciences

throughmagnetic interactions (or couplings). The spins settle
into a stable configuration based on the strengths of those
interactions.

Taking spin physics as inspiration, Hopfield set up a network of
N nodes connected through weighted couplings. Each node had
a value of either 0 or 1, which could be changed (during random
updates) depending on the weighted sum of all the other nodes
to which it was coupled. He defined an “energy” term based on
the relative alignment of the connected nodes and showed that
the network evolved toward a low-energy state.

Hopfield then showed that this spin-based neural network
could store and retrieve a “memory” in one of the low-energy
(stable) states. A real-world example would bememorizing a
pattern in an image. Here, the network nodes are associated
with the pixels on a screen, and the couplings are tuned so that

the output (or stable state) corresponds to a target image,
which might be, for example, the letter “J.” If the network is
then initialized with a different (input) image—say, that of a
highly distorted or poorly written “J”—the node values will
naturally evolve the image to the network’s stable state. This
process illustrates the network associating the input with the
stored “J”-pattern memory.

The practical uses of the Hopfield network drew the interest of
other researchers, including Hinton. In the mid-1980s, he and
his colleagues developed a network called a Boltzmann
machine, in which each possible node configuration is assigned
a probability based on its energy [4]. The researchers devised
an algorithm that adjusted the network’s couplings so that the
probability distribution matched the statistical distribution in
the target data. Tomake the methodmore effective, Hinton and
colleagues introduced the idea of “visible” layers of nodes that
are used for inputs or outputs and separate “hidden” layers that
are still part of the network but not connected with the data. A
variant on this design, called the restricted Boltzmannmachine,
became a precursor to deep-learning networks, which are
widely used tools in fields such as computer science,
immunology, and quantummechanics.

Giuseppe Carleo, a machine learning specialist from the Swiss
Federal Institute of Technology in Lausanne (EPFL), has used
restricted Boltzmannmachines to find the ground states and
time evolution of complex quantum systems [5]. He says that
Hinton and Hopfield laid the groundwork for a mechanistic
understanding of learning. “The most exciting part for me as a
physicist is actually seeing a form of elementary intelligence
emerging from first principles, from relatively simple models
that can be analyzed with the tools of physics,” Carleo says.

Hinton was also instrumental in developing “backpropagation”
for the training of neural networks. The method involves
computing the difference between a network’s output and a set
of training data and then tuning the node couplings to minimize
that difference. This type of feedback wasn’t new, but Hinton
and his colleagues showed how adding hidden layers could
expand the utility of this process.

“This year’s Nobel Prize goes to two well-deserving pioneers,”
says neural-network expert Stefanie Czischek from the
University of Ottawa in Canada. She says the work of Hopfield
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and Hinton showed how the principles of spin systems can
extend far beyond the realm of many-body physics. “Even
though the Hopfield network and the restricted Boltzmann
machine have both been replaced bymore powerful
architectures in most applications, they laid the foundation for
state-of-the-art artificial neural networks,” Czischek says.

Over the years, neural networks have blossomed into a host of
AI algorithms that recognize faces, drive cars, identify cancers,
compose music, and carry on conversations. At the Nobel Prize
press conference, Hinton was asked about the future impact of
AI. “It will have a huge influence, comparable to that of the
industrial revolution,” he said. He imagines this influence will
be welcome in some areas, such as health care, but he also
expressed concern over the possibility that AI will exert a
controlling influence on our lives.

—Michael Schirber

Michael Schirber is a Corresponding Editor for Physics
Magazine based in Lyon, France.
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